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Chapter 1

Overview

A good general purpose grid (mesh) generator should be at least good on two accounts:
1) Quick and easy to setup typical complex gridding problems: The considerations include
the first gridding turn-around time, the subsequent parametric design turn-around time, the
modular parametric design (adding and subtracting features) turn-around time and the
clustering capabilities (for CFD use); And 2) Good grid quality: such as the grid smoothness,
orthogonality, desired grid distribution and surface fidelity. Both accounts are better served
through automation with different levels of user selectable controls.

For a multi-block structured grid generator, automation can be classified into four areas:
1) Optimum distribution of high quality grid, 2) Book keeping of topological information, 3)
Topology generation, and 4) Surface restructuring and repair.

To this end, GridPro is a general purpose, 3-dimensional, multi-block structured grid (mesh)
generator using an advanced smoothing scheme that incorporates many automatic features.

1.1 What is GridPro?

GridPro has achieved full automation in high quality grid distribution and the book keeping
of topological information. It partially automates topology generation by reducing the user task
to the generation a coarse wireframe of the topology in which only imprecise corner and edge
information is required; while the blocks and block faces are automatically generated from the
wireframe. It also has a certain capability of automatic surface restructuring and repair, such
as auto-stitching of surface gaps between surface patches, and implicit surface trimming and
intersection capturing.

The design of GridPro has followed the principles: 1) Minimizing the user input with a
strong emphasis on topological template (COMPONENT) construction capability and reusability,
2) Maximizing the grid quality, and 3) Optimizing the grid distribution.

The first principle cuts down both the initial setup time and more drastically the subsequent
setup time for configuration modifications; The second translates into a higher solution accuracy,
and faster convergence for the CFD solvers; And the third reduces the demand for computer
resources in terms of both the CPU time and the amount of RAM usage.

Once the block topology is chosen, the process of grid generation using GridPro is
accomplished by solving a variationally based system with an iterative updating scheme. In
this process, the initial setup of the grid is only a guess to the final grid that is the converged
solution of the system. Thus, in a general sense, the final grid (solution) is independent of
the initial grid distribution. This results in that only imprecise initial position information is
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10 CHAPTER 1. OVERVIEW

required and dramatically reduces the amount of required user input while generating grids with
excellent quality. On the other hand, multiple sweeps are needed to generate a grid. In this
sense, it is more CPU intensive.

GridPro consists of two main modules:

Figure 1.1 shows the relationship among GridPro/Ggrid and its different components. The
next two sections are devoted to the discussion of this relationship.

 surface
  repair

    TIL
generator

  grid
viewer .setter

B.C.

  

B.C. FileConnectivity FileGrid Data File

Figure 1.1: Relationship between GridPro/Ggrid and its environment.

1) az-Graphics Manager ( type: ‘az <ret>’ to start it ).

2) Ggrid topology engine that reads in topology, and generates and writes out the grid. This
part of the GridPro also includes a suite of other non-graphic utilities.

The media between the two modules is the Topology Input Language (TIL). The az-Graphics
Manager is effectively a language generator that generates and feeds the TIL codes to Ggrid to
generate grids. One can also manually write his/her own TIL codes and/or edit them without
resort to the az-Graphics Manager.

An important point is that every TIL code is a template for the same class of problems.

This manual is about the non-graphic part of GridPro, which includes Ggrid, TIL and other
GridPro utilities. Since the executable Ggrid is the center piece of this volume, we will use the
terms GridPro and GridPro/Ggrid interchangeably, unless a real distinction is needed.

1.2 What do you put into Ggrid ?

For a run-case, the input required from a user has three components: surface specifications,
a block topology and a run schedule.

The surface specifications constitute an external component in that they are provided mostly
from the outside of the GridPro environment and conform to certain standards. The block
topology is the static part of the grid generation process; Grid generation for a changed topology
usually requires one to rerun GridPro. In contrast, the run schedule is the dynamic part of the
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process. The run schedule should be designed to best use the computer resources and to guide
the convergence. You can inspect the grid at the middle of the run and reschedule your run at
any time you wish. You can also resume a previously stopped run.

In general, the grid generation process involves several iterations of modifying and enhancing
the block topology to achieve the best grid quality and optimal grid distribution. The level to
which the enhancements are brought is up to the user.

1.2.1 Surface specifications

Surface specifications are independent of the surface grid generated with GridPro and they
can be from different sources and in different formats. The collection of implemented formats
for GridPro is still expanding.

However, there are also some particular requirements on the surface conditions and formats.
An important requirement is the smoothness of the surface defined. GridPro can handle up to
90o jumps for the surface normal vector. Such condition can break down on the seam lines of
many surfaces generated directly from popular CAD systems.

When necessary, surface geometries should to be restructured to conform to the requirements
of GridPro before using them. Such restructuring can be as simple as changing the data format;
or as complicated as merging surfaces, and smoothing, modifying and removing small features.

Within the GridPro software package, there are utilities and tools to assist users to create
and restructure surfaces. The GridPro/az-Graphic Manager can also be used to accomplish
these.

1.2.2 Block topology

The phrase topology here is defined as the connectivity information of block corners (not
blocks!), the surface assignments of corners (and possibly edges and faces) and the initial
positions of corners. A special topology input language (TIL) is used to record the topology
into files. The topology files must have the file name extension ‘.fra’.

It is the user’s responsibility to design and record a block topology. The design and recording
process can be done either manually coding in TIL or using az-Graphic Manager. However, to
record the design, a user does not need to provide the information about the edges, faces and
blocks in the design. GridPro will generate such information automatically! In simple terms, a
TIL file contains mainly a sequence of corner definitions, each of which provides an approximate
initial position of the current corner, a list of other corners that has a link to the current corner,
and a list of surfaces that the corner should be on.

An important feature of TIL is to organize the topology design into COMPONENTs. A
COMPONENT works much the same way as a subroutine in, say, FORTRAN. It hides the
irrelevant details of the topology and connects to the rest of the topology through interfacial
variables. This feature of TIL provides a natural means to build reusable component libraries.

1.2.3 Run schedule

Since GridPro uses an advanced smoothing scheme in which the grid is generated in multiple
sweeps just as in the case of the ordinary elliptic grid generation, a schedule for the run must
be provided for a better and faster convergence.

A schedule file consists of step lines, each of which lists a sequence of actions that direct
the run process of GridPro. The name of a schedule file must have the prefix part same as the
corresponding main topology file and end with the file name extension ‘.sch’.
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1.3 What do you get out from Ggrid ?

GridPro outputs the block connectivity information and grid data in various formats.

1.3.1 Block grid data

Block grid data is in simple point data format listed block by block.

1.3.2 Block connectivity data

Block connectivity data is written into the file ‘conn.tmp’.

1.4 A complete and simple example

Our first example is to generate a grid for a simple 2-d case. The region to be gridded is
the area between the circle and the rectangular box as shown in Figure 1.2(a). Through this
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Figure 1.2: (a) A simple region to be gridded. (b) The block topology designed by a user.

example, we demonstrate what the basic steps are for generating a grid using GridPro. Also in
this and other examples of this manual, we will focus on the details of coding in TIL; Therefore
we will not use az-Graphic Manager to prepare the TIL code though it is much simpler to do
so for simple cases like this. The advantage of manually coding in TIL becomes obvious when
one deals with more complex cases with topologically repetitive structures, or design iterations
are required.

1.4.0 Step 0 – Preparing surfaces

For the example we are going to demonstrate in this section, all the surfaces used are
built-in implicit analytic surfaces which are simple. For this reason, the task of current step is
significantly reduced.
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Generally, surfaces need to be prepared to conform to the requirements of GridPro. For
instance, GridPro requires a certain degree of smoothness for the surfaces. This sort of
requirements and the surface data format requirements forms a tedious, but more or less
independent part of GridPro; These, being general geometric items, are much less particular
to GridPro. Therefore, a general discussion of this step is left to Chapter 7.

1.4.1 Step 1 – Partitioning and Labelling geometry

The first thing we do is to partition the geometry into surfaces and label the resulting
surfaces. The word surface has a specific meaning for GridPro. A surface here is defined as
a portion of the geometry on which the distribution of grid points is automatically created by
GridPro. It is up to the user to decide how the geometry should be partitioned into different
surfaces. Though there is no unique way to perform the division, for most cases there are one or
two natural ways to do so. The way the geometry should be partitioned also strongly depends
on the block topology in use and the existing geometric features. The surfaces should form a
leakless closure of the gridding region. The gridding region must be connected.

For our case, we can consider that there are five surfaces in the problem. The circle is one,
and the four sides of the box are the other four surfaces. The surface labels we assigned are
marked in Figure 1.2(a) with 1, 2, 3, 4 and 5. In the assignment, each surface should have a
unique number to identify it and the order of the numbering is not important. We will also use
the phrase surface id to mean the number assigned to a surface.

In the above surface division, grid points intended for, say, surface 1 will not be distributed
into surface 2. Another choice for the division is to regard surfaces 1, 2, 3 and 4 as one surface
and assign it a single label. In this case, GridPro will consider the four sides of the box as a
whole in order to decide the distribution of grid points on it.

So far, we have not said anything about the surface data formats and requirements. As
said earlier, we leave the details to Chapter 7, except to mention here that as a rule, each of
the surfaces should be relatively smooth. The intersections of different surfaces do not need to
be explicitly defined; but, generally, the specifications of the surfaces should extend somewhat
beyond the intersections. Note also that only the surface portion that is a part of the closure
of the gridding region is really used. We will not have this problem here, however, since all the
surfaces can be specified analytically in very simple terms as can be seen in the next step.

1.4.2 Step 2 – Designing a block topology with TIL

The second thing we do is to design a block topology for the region to be gridded. This
can be done with the GridPro/az-Graphic Manager or simply using a pen on a piece of sketch
paper. For the purpose of learning TIL, we will go the later route.

The process of designing the topology is the fun part of the whole grid generation process.
It also needs some creativity.

At a simple level, the goal is to cover the region with quadrilaterals (for 2d cases). This
covering does not need to be done at a geometric precise level. It needs to be done only at
a rather topological level; That is, a surface can be represented as a set of piece-wise linear
segments (again for 2d cases) placed not too far from the real surface. Let’s take a circle as an
example. It can be represented by a square, a pentagon, or an arbitrary polygon, all depending
on the needs of your block design. The design will be programmed with the Topology Input
Language (TIL) into a file to be compiled and processed by GridPro.

For a configuration of complex geometry, one can design simple components of block
topologies, and assemble them into a complex one much the same way as a real airplane or
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automobile is built.

For our case, the designed block topology is shown as the dotted lines and big dots in
Figure 1.2(b). The solid lines are surfaces. The big dots represent the block corners and the
dotted lines connecting the big dots are corner links. We also labelled the block corners from
1 to 8 with its approximate coordinates written next to it in the parentheses. The term corner
label is also referred as corner id. The TIL program for this topology design is written in a file
called ‘example1.fra’ and listed in Program 1.1.

Program 1.1 File ‘example1.fra’

SET DIMENSION 2

SET GRIDDEN 16

COMPONENT circleInBox()

BEGIN

s 1 -plane ( 1.0 0 0 0) ; #x1 side

s 2 -plane ( 0 1.0 0 0) ; #y1 side

s 3 -plane (-1.0 0 0 160.0) ; #x2 side

s 4 -plane ( 0 -1.0 0 180.0) ; #y2 side

s 5 -ellip (0.05 0.05 0) -t 50.0 50 0 ; #circle

c 1 28 28 0 -s 5 ;

c 2 72 28 0 -s 5 -L 1 ;

c 3 72 72 0 -s 5 -L 2 ;

c 4 28 72 0 -s 5 -L 3 1 ;

c 5 2.5 2.5 0 -s 1 2 -L 1 ;

c 6 150 2.5 0 -s 2 3 -L 2 5 ;

c 7 150 170 0 -s 3 4 -L 3 6 ;

c 8 2.5 170 0 -s 4 1 -L 4 7 5 ;

g 1 5 32;

END

To have an overview of a complete example, only a brief explanation is given here for
Program 1.1. A detailed explanation is left to Chapter 2 to 4.

Program 1.1 tells GridPro that the topology is a 2d case (SET DIMENSION 2); Edges are
initialized to have 16 grid points (SET GRIDDEN 16); And the topology consists of one component
(COMPONENT circleInBox()) in which five surfaces and eight corners are defined. A corner is
defined by its initial position, the surfaces it should be on (with the -s flag) and the corners it
has link to (with the -L flag). Note: the coordinates must be specified in 3-d fashion for both
2d and 3d cases.

The line starting with the key word ‘g’ assigns the edge connecting corners 1 and 5 with 32
grid cells.

Any thing beyond the ‘#’ character in a line is ignored by GridPro.

1.4.3 Step 3 – Scheduling your run

Our run schedule must be in the file ‘example1.sch’.



1.4. A COMPLETE AND SIMPLE EXAMPLE 15

To be simple, let’s say we want to generate a grid in 100 sweeps and write out the 2d grid
to a file called ‘blk2d.tmp’. ‘example1.sch’ will have only two lines as follows:

Program 1.2 File ‘example1.sch’.

step 1: -S 100 -w

write -f blk2d.tmp

The schedule section of the file has only one step with two actions. The actions are executed
one by one from left to right. The first action ‘-S 100’ tells GridPro to run 100 relaxation
sweeps; The second, ‘-w’ directs GridPro to execute an output grid action.

The details about the data to be outputted is specified in the output section of the same
schedule file. This section consists of all the lines beginning with the key word write. For
our case, it has also only one line, which tells GridPro to write out the grid to a file called
‘blk2d.tmp’ (-f blk2d.tmp).

1.4.4 Step 4 – Generating a grid

Now, we are almost ready to run GridPro. Since some ‘.tmp’ files will be generated
automatically in the current directory when running GridPro, it is always a good idea to create
a directory for each run case, and place your ‘.fra’, ‘.sch’ and other relevant files in it. You
should run GridPro in it too.

GridPro is normally installed in the directory ‘SOMEWHERE/GridPro’. Before running it,
make sure the path has ‘SOMEWHERE/GridPro/bin’ in it. You can check the path by typing,

set | grep path <ret>

If it is not set, set it by appending to ‘/̃.cshrc’ a line,

set path = ( $path SOMEWHERE/GridPro/bin )

To generate a grid, type,

Ggrid example1.fra<ret>

GridPro will read ‘example1.fra’ once to generate all topology information and schedule
the run according to ‘example1.sch’. When it finishes, the grid generated is stored in the file,
‘blk2d.tmp’.

The data is in a simple point data format. That is, the data is listed block by block starting
from block 1. For each block the data can be read from a FORTRAN program as follows:

Program 1.3 Point data format in FORTRAN

READ(UNIT,*) IMAX,JMAX,KMAX

DO 10 I=1,IMAX

DO 10 J=1,JMAX

DO 10 K=1,KMAX

10 READ(UNIT,*) X(I,J,K), Y(I,J,K), Z(I,J,K)
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Figure 1.3: A grid generated from Program 1.1.

where X, Y, Z are the x, y, and z coordinates of a grid point.
The connectivity information of the blocks is automatically stored in the file ‘blk2d.tmp.conn’.

For the format of it please read Section 5.3.2.
Now you can examine the grid using the az-Graphic Manager by typing,

az -v blk2d.tmp <ret>

For the details of operating az, see the manual volume for GridPro GUI and the on-line help
in az.

The grid is also shown in Figure 1.3.
So far, we have finished one cycle of the grid generation process. It is likely enough for a

simple problem like this. However for a complex problem, the user probably has to go through
several cycles of retopologizing and rescheduling to generate a grid to one’s liking.

1.5 Organization of this manual

The rest of the manual is arranged as follows: In Chapter 2 to 4, the Topology Input Language
(TIL) is introduced and explained through the simple example given in Chapter 1. The usage
of vector and scalar expressions to specify real space positions is discussed in Chapter 5. How
TIL program can open, close, read and write files is explained in Chapter 6. These are useful for
parameterization of the topology. Chapter 7 is devoted to the surface specifications implemented
in the current version of GridPro.

Appendix A and B are scheduling syntax and worked out examples.



Chapter 2

Basics of Topology Input Language
(TIL)

Minimum or no knowledge of TIL is required for people using the az-Graphic Manager only
to create topology. However, programming with TIL become increasingly important for complex
geometries with repetitive sub-topologies, or when design optimization for the geometry is in
consideration. In this Chapter, we will use Program 1.1 to illustrate the basics (the minimum
knowledge required) of Topology Input Language (TIL).

2.1 TIL program structure

When GridPro processes a TIL program, anything from a ‘#’ character to the end of the
line is ignored. A ‘#’ character can be used to introduce comments for that line.

New-line characters and tabs are treated as spaces and consecutive spaces will be truncated
to a single space. Thus, the alignment in Program 1.1 is purely for styling purposes. In writing
a TIL program, spaces can often be omitted as long as tokens can be read in correctly.

A TIL program can have three sections appearing in the following order:

1) An optional global assignment section.
2) An optional include section.
3) A component definition section.

Program 1.1 has only sections 1) and 3). The missing section 2) is normally used where
the topology design is programmed in several files or topology libraries. For the case where the
entire topology is contained in a single file, there should not be an include section.

The optional assignment section is used to assign certain global parameters. A parameter
not assigned in the assignment section takes a default value.

The first two lines of Program 1.1 form the assignment section,

SET DIMENSION 2

SET GRIDDEN 16

It specifies the problem to be a 2d case and initializes every edge to have 16 grid cells. The
parameter DIMENSION can have a value either 2 or 3. The parameter GRIDDEN must have a value
greater or equal to 3. Without these assignments, DIMENSION and GRIDDEN take the default
values 3 and 8, respectively.

17
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The ‘SET GRIDDEN’ line can have another syntax as follows:

SET GRIDDEN E_X_axis 16 E_Y_axis 12 CROSS 10

Multiple such ‘SET GRIDDEN’ lines can be used to initialize grid density on edges. Here,
E X axis, E Y axis and CROSS are global edge labels defined in the TIL program, that each may
be a collection of more than one edges. A ‘SET GRIDDEN’ line like this functions as a schedule
step before those steps in the .sch file.

GridPro is a general purpose 3d software package. For a 2d case, GridPro will first convert
it to a 3d case, then run it as a 3d problem. Thus, for a 2d case, anything in the topology file
involving real space positions still has to be specified in a 3d fashion. However, the z coordinate
should always be assigned a value, 0. The places where real space positions are involved can
be the initial positions of corners, the data to specify surfaces, and possible translation and
rotation operators for surfaces and components. We will see it when we go through the details
of Program 1.1.

The component definition section is the core of a TIL program. The basic unit of topology
specifications in TIL is a COMPONENT and a TIL program consists of at least one COMPONENT.
A COMPONENT is composed by a set of declarations and statements bounded by the key words
BEGIN and END as follows,

COMPONENT comp_name( arg_list )

BEGIN

declaration

.

.

declaration

statement

.

.

statement

END

Each declaration or statement starts with a key word and ends with the terminal symbol
‘;’. The first COMPONENT is always the head COMPONENT which does not require any arguments
to be passed in and out. GridPro will construct the complete block topology from the head
COMPONENT.

For our case, the entire topology design is specified in a single component named circleInBox.
The five statements starting with an s define the five surfaces. The eight statements beginning
with a key c define the eight topology corners shown in Figure 2.1(b). The last statement assigns
a grid density for an edge.

2.2 Defining surfaces

A surface can be in one of three modes depending on how they are used. A surface of the
fixed mode is fixed in space by the data specifying the surface; A surface of the periodic mode
is used for periodic boundary conditions and is not fixed in space by the data specifying the
surface. A surface of the float mode has no fixed position in the space. For most cases, surfaces



2.2. DEFINING SURFACES 19

are defined in the fixed mode. A fixed surface can be either internal or external depending on
whether both sides or only one side of the surface need to be gridded.

Before we proceed further, let us make a distinction between the phrases surface specification
and surface definition used in this manual. By a surface specification, we mean the data and
data format used to describe the shape of a surface. On the other hand, by a surface definition,
we mean a statement in the TIL program which starts with a key word ‘s’ and assigns an id and
other attributes to a surface. The main function of a surface definition is to make the surface
known to other parts of the TIL program.

2.2.1 Surfaces of the fixed mode

All the five surfaces used in Program 1.1 are in the fixed mode. They are also all used as
external surfaces. The term external here simply means that the grid region is on one side of
the surface, as opposed to an internal surface where blocks must appear on both sides of the
surface.

External surfaces

Among the five surfaces, the first four are of type -plane; The fifth is of type -ellip (for
ellipsoid).

There are two groups of surface types used in GridPro. The first group is the explicit surfaces.
A surface of this group is usually specified by a fair amount of data stored in a separate file(s).
The second group of types are implicit. In this case, a surface is defined as an equal potential
surface of a scalar valued analytic function of position vector. Some of the simple forms of the
functions are hard wired into GridPro. They are called built-in implicit types. For these types,
a surface is specified by providing several parameters in the corresponding surface definition
statement in the TIL program. There is no need for a separate specification data file. Both
types, -plane and -ellip are built-in implicit types. (For a complete list of types accepted by
GridPro see Chapter 7.)

For a surface of type -plane, the four real numbers enclosed in the parentheses (a b c d)
specify the plane in such a way that a point on the plane satisfies the equation ax+by+cz+d = 0
and the plane normal vector (a, b, c) should point into the region to be gridded. To be more
specific, let us look at the statement defining surface 3,

s 3 -plane(-1.0 0 0 160);

This is the right side of the box (Figure 2.1(a)) with the normal vector pointing opposite to
the x axis. Therefore the equation for it is −x + 160 = 0 and the parameters for the surface
appear as (-1.0 0 0 160).

For a surface of type -ellip, three real numbers enclosed in the parentheses (a b c) are
provided. A point on the ellipsoid satisfies the equation (ax)2+(by)2+(cz)2−1 = 0. For a circle
of radius 20, we have a = 0.05, b = 0.05, and c = 0. The center of the circle is translated by the
-t translation vector operation with translation vector = 50.0 50.0 0. Altogether this appears
as,

s 5 -ellip(0.05 0.05 0) -t 50.0 50 0 ;

Note that the -t translation vector operation can be used for any type of surface. In fact,
general transformations can be applied to surfaces. And a general transformation can be specified
using vector expressions (See Chapter 5).
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As we mentioned above for plane surfaces, the surface normal must point into the region
to be gridded. This is generally required for all types of external fixed surfaces. If the surface
definition is in a wrong orientation, a -o flag can be placed in the corresponding surface definition
statement to reverse the orientation. Normally, the place to put it is next to the type (and
associated parameters or data) flag. For example, the following statement defines the same
surface 3 as before,

s 3 -plane(1.0 0 0 -160) -o;

Another useful attribute that can be associated with a surface is a targeted average off-wall
normal grid spacing. The line,

s 3 -plane(1.0 0 0 -160) -o -c 0.00001;

assigns surface 3 a spacing of 0.00001. It means that grid points near surface 3 are intended to
be clustered toward surface 3 with a target first layer grid normal spacing 0.00001.

Two things you need to keep in mind. First, the clustering will not take effect until it is
turned on in the run schedule. Turning it on or off can be scheduled at any step in the schedule
file. Second, turning the clustering on does not always mean the targeted spacing will be reached.
GridPro tries to limit the grid growth ratio of the length scales of two consecutive grid cells not
larger than 3.

Internal surfaces

An internal surface is a surface for which both sides of the surface are to be gridded. An
internal surface can be specified with any surface type that can be used for an external surface.
However, the orientation of the surface must be suppressed with the flag -O in the surface
definition statement. The grids on both sides of an internal surface will be matched on the
surface. A typical example is the wake of flow over an airfoil. To obtain a high grid quality, it
is desirable to have internal surfaces relatively flat.

2.2.2 Surfaces of the periodic mode

Though periodic boundary conditions are not used in the example programs, it is basic
enough to render a discussion here.

A surface of the periodic mode can only be of implicit type (-implic, -xpolar or -xyz. The
same s statement syntax defines the surface. However, the data used to specify the surface is
different.

In this case, a surface specification really specifies a family of infinitely many surfaces and
one of them will become the final surface determined by many other factors. For details see,
Section 2.5 and 7.4.

2.2.3 Surfaces of the float mode

It can be used to specify spacings for block interfaces. The only valid surface type for this
mode is -float.
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2.3 Defining corners

The eight statements beginning with a key c in Program 1.1 define the eight topology corners
shown in Figure 2.1(b). For each of the c-statements, the number next to the key c is the label
we assigned to the corner; The next three numbers give an approximate initial position (x, y, z)
of the corner. Two more pieces of information for defining a corner are the fixed boundary
conditions of the corner and the linkages to other corners.

By a boundary condition, we simply mean a logical association or assignment of a corner,
edge or face to a certain surface. GridPro uses the associations to determine the automatic
distribution of grid points on corresponding surfaces.

The boundary conditions of the fixed mode for a corner are specified through a list of surface
labels following -s and the linkages are specified by a list of corner labels following -L. All
referenced corners or surfaces following the -s flag and -L flag should be defined before the
current statement. For example, consider the statement,

c 6 150 2.5 0 -s 2 3 -L 2 5;

This says that corner 6 is on surface 2 and 3 in the final grid (-s 2 3), and has links to
corner 2 and 5 (-L 2 5) . Notice, in Figure 2.1(b) corner 6 has also a link to corner 7, however
by the rule, only those corners defined before corner 6 will be listed for corner 6. Thus the link
from corner 6 to corner 7 will only appear in the link list for corner 7.

The initial position of corner 6 is at (150, 2.5, 0) which is not and does not need to be on
surface 2 and 3. This is another point we would like to make: The surface assignments for a
corner is meant for the final grid; the initial position of a corner does not have to be placed on
the surfaces assigned to the corner. In fact, the initial positions of corners can be specified at a
very imprecise level and, in theory, the final grid is independent of the initial positions. On the
other hand, the initial positions can not be entirely arbitrary in order to have a convergent final
grid.

A good rule of thumb is to put the links intended for a surface on the outside of the surface
if it is a closed surface, and on the convex side of the surface if it is not, and more carefully
place the corners that are near the high curvature region.

2.4 Assigning grid densities

Without an explicit assignment of grid density, an edge is assigned the default value of 8
cells. There are four means to change the assignment. They are listed with increasing priorities
as follows,

1) Global assignment without edge labels: We have discussed it earlier in Section 2.1. An
example is a line such as,

SET GRIDDEN 3

in the header of the main TIL program file.
2) Local static assignment: It is done through the g–statements in the components of a TIL

program. Assume we have the following line in component circleInBox of Program 1.1,

g 1 5 32 1 2 25 1 3 30 6 5 20 2 3 1;

Here each triplet of numbers following the key word, g, defines an edge grid density
assignment. Let us use Edge(1,5) to mean the edge connecting corners 1 and 5. Thus, 1 5 32
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means assigning 32 grid points to Edge(1,5). This assignment will propagate through all the
parallel edges, that is Edge(2,6), Edge(3,7) and Edge(4,8) in this case.

Three rules apply here, a) All the corners referenced (i.e. corners 1, 2, 3, 5 and 6 in this case)
must be defined before this statement. Otherwise, it is a syntax error. b) If an edge referenced
does not exist(e.g. Edge(1,3) here) or the grid density is less than 3 (e.g. in 2 3 1), the triplet is
ignored. c) If an edge group is affected more than once, the assignment with more grid points
takes precedence (e.g. 1 2 25 takes precedence over 6 5 20). This last rule also applies over
different g–statements in different components.

3) Global static assignments with edge labels: Act as if it is the first schedule step. Again,
see Section 2.1 for an example.

4) Dynamic assignment: Grid density can also be dynamically changed in a similar fashion
as for static assignments. It is done through -g actions in the schedule file. Changes can be
scheduled to happen at different steps. For details, see Appendix A.

2.5 Periodic boundary conditions

i statements are used to define periodic boundary conditions. A periodic boundary is set
by identifying corner pairs through a period with respect to a periodic surface.

Note that: A corner on a periodic surface should NOT be assigned to the surface through
the ‘-s’ flag in the corner definition statement!

Consider a simplified example of turbo blade cascades in 2d shown in Figure 2.1(a).
Figure 2.1(b) is the topology design for one of the blades. The solid lines are surfaces in the
fixed mode. The two dashed lines here are surfaces in the periodic mode. They both have the
same surface label, 4, since they are periodic to each other with respect to surface 4.

Then, what do we mean by ‘periodic with respect to a surface’? Let’s explain it with the
example in mind.

First, on the two dashed lines we must have the same number of corners and every corner
on one dashed line is paired with one and only one corner on the other dashed line. The
neighbouring relationship of corners on one dashed line must be preserved through the pairing
process (that is, the two sides have the same topology). The pairing of two corners is also called
an identification of the corners since the two corners are identical in the sense that a corner on
the lower dashed line of blade 2 is the paired corner on the upper dashed line of blade 1. With
a correct identification between corners on the two dashed lines, all the grid points on the two
dashed lines are automatically identified (or paired). In our case, the identification is: corner 1
to corner 13, corner 2 to corner 14, corner 3 to corner 15, and corner 4 to corner 16.

Second, a surface specified in the periodic mode defines a coordinate transformation from
the physical space (x, y, z) to some working space, say, (u, v, w), such that in the new coordinate
system (u, v, w), two corners having an identifying relation have the same values for v and w,
and a given and fixed difference δu in u.

Third, it is the user’s responsibility to choose the coordinate transformation for which
certain consistency must be maintained. In terms of the new system, any surfaces
intersecting both dashed lines (surfaces 2 or 3) must be periodic in the same fashion. That
is, in the (u, v, w) space and using the above example, if a point (u0, v0, w0) is on surface 2
and near the lower-left intersection between surface 2 and surface 4 where the final grid is
expected, the point (u0 + δu, v0, w0) must be on the surface that intersects surface 4 on the
upper left-intersection, which, in this case, happens to be the same surface 2.
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Figure 2.1: A turbo cascade in 2d.

In our case, the choice of coordinate transformation used for surface 4 is

u = x+ 2y

v = 2x− y

w = z

Surface 2 and 3 are,
2x− y = 0 ( v = 0 )

and
−2x+ y + 360 = 0 ( − v + 360 = 0 )

The TIL program for this topology is listed below,

COMPONENT blade()

BEGIN

s 1 -linear "blade.dat";

s 2 -plane ( 2 -1 0 0);

s 3 -plane (-2 1 0 360);

s 4 -implic "periodSurf.h" 250.0; # define the coordinate

# transformation

c 1 0 0 0 -s 2 ;

c 2 20 0 0 -L 1;

c 3 160 0 0 -L 2;

c 4 180 0 0 -s 3 -L 3;

c 5 8 16 0 -s 2 -L 1;

c 6 28 16 0 -L 2 5;

c 7 168 16 0 -L 3 6;

c 8 188 16 0 -s 3 -L 4 7;

c 9 42 84 0 -s 2 -L 5;

c 10 62 84 0 -L 6 9;

c 11 202 84 0 -L 7 10;
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c 12 222 84 0 -s 3 -L 8 11;

c 13 50 100 0 -s 2 -L 9;

c 14 70 100 0 -L 10 13;

c 15 210 100 0 -L 11 14;

c 16 230 100 0 -s 3 -L 12 15;

c 17 50 35 0 -s 1 -L 6;

c 18 100 35 0 -s 1 -L 7 17;

c 19 175 65 0 -s 1 -L 11 18;

c 20 65 65 0 -s 1 -L 10 19 17;

i (1 13 4);

i (2 14 4);

i (3 15 4);

i (4 16 4);

END

The last four statements set up the periodic boundary condition for the two dashed lines.
An i-statement has the following syntax:

i (cid1 cid2 sid);

Here cid1 and cid2 are two corner ids, sid is a surface id. The statement identifies corner
cid2 with corner cid1 through surface sid. Here, one has to make sure that surface sid is one
that can be used for a periodic BC. In other words, it is one of the types -xpolar, -xyz, or
-implic. And remember that not every -implic surface can be used for a periodic BC. More
precisely, for the final grid in the new coordinate system (u, v, w) defined in surface sid, the
periodic boundary condition requires,

(u2, v2, w2) - (u1, v1, w1) = (period,0,0)

where (u1, v1, w1) and (u2, v2, w2) are for corners cid1 and cid2 respectively. Notice, the period,
which is given when the surface is defined, is specified in terms of the u coordinate of the new
system. The sign of period is irrelevant, since internally the sign is recalculated from the initial
positions of relevant grid points. See Chapter 7, for the details of constructing an ‘.h’ file for a
periodic surface.

2.6 Topology building rules

In designing a block topology, one needs to keep in mind the automatic rules that GridPro uses
in the topology construction, then, follow the user rules to build a valid topology.

2.6.1 Automatic rules

Automatic rules are rules that GridPro uses to build the final topology from the topology
input program (TIL code).

1) The rule of object building: Unless explicitly overruled, a link forms an edge, a closed
4-edge loop forms a face (or a block for 2d cases) and six closed faces form a block.
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This rule may generate false faces or blocks. GridPro provides a means to correct them
either automatically or manually. In the case of Program 1.1, since the quadrilaterals defined
by corners 1, 2, 3 and 4, and by corners 5, 6, 7 and 8 form two 4-edge loops, two blocks will
be generated. However, they are not intended to be blocks. Therefore, they can be explicitly
excluded with the x-statement such as,

x f 1 3 5 7 ;

where a quadrilateral is referenced by a pair of its diagonal corner labels. More discussion on
statements like this appears in Chapter 4.

These loops will be also automatically excluded from forming blocks as long as the surfaces
are all correctly assigned to corners.

2) The rule of surface assignments: Unless explicitly overruled, the surface assignments of an
edge (face) are derived from the surface assignments of its two (four) boundary corners (edges)
with the possible modifications by the next two rules.

Again, in Program 1.1, this rule sets the surface assignments for all edges. GridPro will
determine that the edge connecting corners 7 and 8 is on surface 4 since both corners 7 and 8
are on surface 4; Further, since this edge is the only edge on surface 4, GridPro will automatically
distribute the grid points of this edge onto the part of surface 4 bounded by the intersections
of surface 4 with surface 1 and surface 3. By the same token, the edges defined by corners 1
and 2, corners 2 and 3, corners 3 and 4, and corners 4 and 1 are all on surface 5; GridPro will
automatically distribute the grid points on all of these edges as a whole on the circle – surface
5.

3) The rule of overlapping surfaces: When a face is assigned either automatically or manually
to two or more fixed surfaces, these surfaces are overlapping surfaces. The data specifying these
overlapping surfaces must actually overlap each other over the area where the face may locate.
In the part of topology that has surface overlaps, they are considered as one surface, thus, the
intersections of the overlapping surfaces will not be sought.

Surface overlap is used for avoiding surface confusion for some tricky surfaces. In those
cases, one has a pre-knowledge as to where a face of concern will or will not go in the final grid
generated by GridPro, and by some reason, the face did not attach to the correct part of the
surface. One can divide the surface of concern into several surfaces, and overlap them on the
area where no confusion is likely. Note that, the concept of surface overlap here is not merely
a physical space overlap of surfaces; It also attaches topological requirements. Two surfaces
overlap only when at least one face is located on both of them. Note also, that overlap is only
a local concept, in that, two surfaces may overlap in one region and intersect in another.

4) The rule of reduction of surface assignments: It is an over supply of surfaces if a corner
is assigned to more than 3 surfaces, or a edge is assigned to more than 2 surfaces, or a face is
assigned to more than 1 surface. GridPro will make a proper reduction of such over assignments.
To generate a good grid, it is required that the surfaces of every possible reduction produce the
same intersection. For example, if an edge is assigned to 3 surfaces, the 3 intersection curves
generated from 3 possible selections of 2 surfaces out of 3 should be the same. If a corner is
assigned to 4 surfaces, the 4 surfaces should intersect at one point. One should note that these
requirements are not generally satisfied since in general 3 surfaces do not intersect at one point
and 4 or more surfaces do not have intersection. Therefore, special care must be taken to insure
the requirements are satisfied.
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This rule can be overruled by using exclude(x), and add(a) -statements to eliminate manually
the over assignments for the relevant corners, edges and faces.

2.6.2 Rules of valid topology

The rules of valid topology are the rules that the user must follow to design a valid topology.
In order to follow these rules, one must first understand the automatic rules used in GridPro (see
previous subsection).

A topology that GridPro can successfully parse and compile is a valid topology. GridPro
accepts very general topology input. However, GridPro may reject certain seemingly valid
topologies for various reasons.

1) The rule of irreducibility: With a valid topology, the grid region must be decomposed into
full face matching blocks without dangling, unused, or redundant corners, edges or faces.

2) The rule of connectedness: All parts of a topology must be connected. That is, a valid
topology is one that can not be divided into disconnected parts. If a topology can be divided into
disconnected parts, it usually means that the region to be gridded is composed of disconnected
subregions. In this case, one should grid each of the subregions independently.

3) The rule of singularity: GridPro will reject any topology that has an edge that has more
than 8 blocks to it. This rule stems from the grid quality considerations.

4) The rule of surface closure: In the topology, the faces assigned to external surfaces must
form a full closure of the grid region. That is, these faces should fully separate the region to
be gridded from the rest of the world. If internal surfaces are involved, the faces on non-float
surfaces is better to cut fully the grid region into disjoint subregions.

These rules are the minimum requirements for a valid topology. However, a valid topology
does not always guarantee a grid, let alone a good grid, since the rules here concern only
the topological acceptability of the blocking. Many other factors affect whether a grid will
be generated. A class of these factors concerns the physical space properties of the involved
surfaces and initial corner positions. In the following, we give a few typical situations where a
valid topology may lead to bad grids or no grids at all.

1) Incompatible topology: The block topology is not suited for the physical shape of the
region to be gridded.

2) Bad initial corner positions: The initial positions of corners can be generous, but should
not be too wild.

3) Incompatible surfaces: The physical space properties of surfaces must be compatible with
topological requirements. For example, if the topology requires two surfaces intersect, they must
intersect truly in the real space. A true intersection of two surfaces is a curve and at every point
on the curve, the two normals of the two surfaces are distinct.

4) Bad internal surfaces: A bad internal surface can mean either that the surface has too
much non-uniformity of curvature, or that the neighbourhoods on the two sides of the surface
are too different.



Chapter 3

Using Multiple Levels of
COMPONENTs

TIL programs written with multiple levels of COMPONENT s are more compact,
easier to maintain and modify, and clearer structure-wise. COMPONENT s are reusable. Thus
COMPONENT libraries can be built for general use. Using a COMPONENT in TIL is very
similar to using a subroutine in FORTRAN. Users should take advantage of this capability of
TIL.

3.1 A new look of the old topology

For the same geometry and topology shown in Figure 1.2, we now redo it in a multiple
COMPONENT style in Figure 3.1. Same as before, the solid lines are surfaces, dotted lines and
the big dots are our topology design. We have constructed two COMPONENT s in Figure 3.1(a)
and (b), and named them box and circle respectively. The new symbol, a circle with a number in
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Figure 3.1: (a) COMPONENT box. (b) COMPONENT circle.
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it, represents an imported corner from the outside of that COMPONENT. The initial positions
for corners in the COMPONENT circle are not given since we have decided to assign them
dynamically, i.e. they will depend on the initial positions of corners imported.

The other thing you might have noticed is that we have assigned the labels 2, 4, 5 and 6
for the corners in box. This is just to show you that the labels do not have to start from 1 and
there can be gaps in between. You may find this useful when you try to modify an existing
topology. For example, if you have to strike out a few corners and make a few new links on an
old topology, you can still use those old labels. The TIL program now looks like this,

Program 3.1 File ‘example11.fra’, a variation of ‘example1.fra’

SET DIMENSION 2

SET GRIDDEN 16

COMPONENT circleInBox()

BEGIN

s 1 -plane ( 1.0 0 0 0) ;

s 2 -plane ( 0 1.0 0 0) ;

s 3 -plane (-1.0 0 0 160.0) ;

s 4 -plane ( 0 -1.0 0 180.0) ;

s 5 -ellip (0.05 0.05 0) -t 50.0 50 0 ;

INPUT 1 box( sIN ( 1..4), cOUT (2 4..6)) ;

INPUT 2 circle(cIN (1:1..4), sIN (5) ) ;

END

COMPONENT box( sIN s[0..3] )

BEGIN

c 2 2.5 2.5 0 -s s:0 s:1 ;

c 4 150 2.5 0 -s s:1 s:2 -L 2 ;

c 5 150 170 0 -s s:2 s:3 -L 4 ;

c 6 2.5 170 0 -s s:3 s:0 -L 5 2 ;

END

COMPONENT circle( sIN sc, cIN cb[1..4] )

BEGIN

c 1 @ 0.99*<cb:1>+0.01*<cb:3> -s sc -L cb:1 ;

c 2 @ 0.99*<cb:2>+0.01*<cb:4> -s sc -L cb:2 1 ;

c 3 @ 0.99*<cb:3>+0.01*<cb:1> -s sc -L cb:3 2 ;

c 4 @ 0.99*<cb:4>+0.01*<cb:2> -s sc -L cb:4 3 1 ;

g 1 cb:1 32;

END

Program 3.1 and Program 1.1 represent the same block topology, except for the difference
in the corner’s initial positions and corner labels (as well as the internal edge and block labels).
Thus, Program 3.1 will generate the same final grid as Program 1.1 does, provided they run with
the same parameter settings in their schedules. However, the two programs look very different.
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3.2 Inputting COMPONENTs

The main difference is that the eight corners of circleInBox in Program 1.1 are split into
two components, box and circle. The four corners (corners 2, 4, 5 and 6) of box in Program 3.1
correspond to corners 5 to 8 in Program 1.1 and the four corners of circle in Program 3.1
correspond to corners 1 to 4 in Program 1.1. CircleInBox in Program 3.1 inputs component,
box and circle with the two statements,

INPUT 1 box( sIN ( 1..4 ), cOUT ( 2 4..6 ) ) ;

INPUT 2 circle( cIN ( 1:1..4 ), sIN ( 5 ) ) ;

Here, the number following the key word, INPUT, is the input label that is assigned for the
inputted component. Then, the component name with required argument assignments follows.
Same as for the labels of corners and surfaces, the labels for the INPUT s in a COMPONENT
should be assigned with an increasing order starting from a non-negative number. Gaps in the
numbering are allowed.

When an INPUT statement is processed by GridPro, a copy of the original component is
made, manipulated, and placed in the overall topology with proper connections. By original,
we mean the part of the TIL program that defines the component. The original of a component
is also called the definition of the component. For example, the original copy (or the definition)
of box is,

COMPONENT box( sIN s[0..3] )

BEGIN

c 2 2.5 2.5 0 -s s:0 s:1;

c 4 150 2.5 0 -s s:1 s:2 -L 2;

c 5 150 170 0 -s s:2 s:3 -L 4;

c 6 2.5 170 0 -s s:3 s:0 -L 5 2;

END

Connections between box and circle are made by passing relevant surfaces and corners
through interfacial array variables.

3.3 Passing-in and out variables

In Program 3.1, the head component, circleInBox, after defining five surfaces, first inputs a
copy of box, with the statement,

INPUT 1 box( sIN ( 1..4 ), cOUT ( 2 4..6 ) );

It should be compared with the interface defined in the original copy of box,

COMPONENT box( sIN s[0..3] )

The type key, sIN, indicates the following variable arguments introduced or evaluated are
for passing-in surfaces. Similarly, cOUT are for passing-out corners. Two more types, cIN and
sOUT, not used here, are for passing-in corners and passing-out surfaces respectively.

s[0..3] in the COMPONENT line above defines an interfacial array variable named s with
an element range from 0 to 3 for passing-in surfaces. The elements of this array variable can be
referenced inside the component box in the way explained in the next section. A variable name
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should have no more than 8 characters starting with a letter followed by any combination of
letters, digits, and the character ‘ ’. Upper-case and lower-case letters are distinct.

As a rule of TIL, all passing-in variables must be explicitly defined in the component interface
of the original copy as variable arrays, each with a name and range.

On the other hand, no passing-out variable should be explicitly defined in the component
interface of original copy. They are defined and assigned with values in the component interface
of an INPUT statement.

In Program 3.1, when a box is inputted in another component circleInBox, the array variable
s[0..3] must be assigned values with a matching type and length in the component interface of
the INPUT statement.

A pair of parentheses indicates the assignment (or evaluation) of a variable array. For our
case, the assignment sIN (1..4) in the INPUT statement matches in length (4 elements) and
type (sIN ) with the variable s[0..3] defined in the interface of the original box. The elements 0
to 3 of variable s are assigned the values of surfaces 1 to 4 of circleInBox. That is, inside the
current copy of box, a reference to the 0th element of variable s means surface 1 in circleInBox,
and a reference to the 1st element of variable s means surface 2 of circleInBox, and so forth.

Notice that the variable name s does not appear in the assignment. In general, variable
names do not appear with the assignments for passing-in variables since the position of the pair
of assignment parentheses from the type key sIN or cIN uniquely determines which variable is
being assigned. In this way, the first pair of parentheses following sIN in an INPUT statement
indicates the assignment of the first variable array following sIN in the corresponding original
COMPONENT, the second pair of parentheses following sIN indicates the assignment of the
second variable array following sIN and so on so forth until a new type key or no more pairs of
parentheses are found.

Similarly, corners 2,4,5 and 6 of box are passed out from box with the variable assignment
cOUT ( 2 4..6 ) in the INPUT statement above. Here cOUT ( 2 4..6 ) introduces to the
parental component, circleInBox, a new variable of type cOUT and length four with a range
from 1 to 4 and a default name (Note: the ranges of variables introduced with cOUT or sOUT
always start from 1). The elements 1 to 4 of this variable are assigned the values of corners 2,4,5
and 6 of box. Thus, the first element of the variable (which is referenced with 1:1) means corner
2 in box after the assignment, and the second element of the variable (which is referenced with
1:2) means corner 4 of box, etc. For more detail about variable referencing, see the next section.

A name can be associated with a passing-out variable. For example, if we have cOUT corn4(
2 4..6 ) instead of cOUT ( 2 4..6 ), the variable automatically introduced will have a name corn4
instead of a default name. For an INPUT statement, there can only be at most one variable
with a default name; usually it is the first variable following the type key cOUT or sOUT.
Names for non-default named variables in an INPUT statement must be distinct. However, the
same name can be used for variables in different input statements. When referenced, they will
be distinguished by the input labels of the variable referencing mechanism.

Since an assignment for a passing-out variable automatically defines a new variable, different
copies of the same component can have different passing-out variables.

3.4 Referencing variables

A major difference between Program 3.1 and 1.1 is the concept of a variable being used as
was done in Program 3.1 and not in Program 1.1. We have already touched on some aspects of
it in the last section. We will give a more complete discussion here.
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First, all variables in TIL are array variables, of which the values are numbers used to label
the corners or surfaces. To be simple, one can regard the labels of the corners or surfaces as
pointers to the corners or surfaces.

An array variable is always associated with an element range which can be as short as 1. The
same corner in two different copies of the same component should be regarded as two distinct
corners at any of their parental component levels. Therefore, they will be referenced differently.

Second, variables can be introduced or defined explicitly or implicitly. All the passing-in
variables for a component are explicitly defined in the interface of the
component definition (also called the original copy). All the passing-out variables for a
component are implicitly introduced when a copy of the component is inputted. Thus, one
can introduce different passing-out variables for the same component at different INPUT s.

Two more variables are implicitly defined. One is for local corners. Local corners are those
defined with a corner definition statement in the current component. The other is for local
surfaces. A TIL program line like,

c 6 150 2.5 0 -s 2 3 -L 2 5;

is actually assigning the 6th element of the local corner variable array.

In fact, TIL considers any reference to a corner or surface as a variable referencing. Thus,
the numbers, 2 and 3, following -s in the above TIL program line actually refer to the 2nd and
3rd elements of the local default surface variable; The numbers, 2 and 5, following -L refer to
the 2nd and 5th elements of the local default corner variable. The most general form of variable
referencing is,

input label var name:num1...num2

As we have seen, not all parts are needed for a variable referencing. The following is a
complete list of examples for variable referencings:

3corn4:5..10 – the 5th to 10th elements of the variable corn4
passing-out from the inputted component 3.

3:5..10 – the 5th to 10th elements of the default variable
passing-out from the inputted component 3.

corn4:5..10 – the 5th to 10th elements of the variable corn4
defined in the interface of the current component.

5..10 – the 5th to 10th elements of the local default variable.
3corn4:5 – the 5th element of the variable corn4 passing-out

from the inputted component 3.
3:5 – the 5th element of the default variable passing-out from

the inputted component 3.
corn4:5 – the 5th element of the variable corn4 defined in the

interface of the current component.
5 – the 5th element of the local default variable.
corn4 – the 1st element of the variable corn4 defined in the

interface of the current component.

Using these examples, you should be able to interpret easily the meaning of variable
referencings used in Program 3.1.
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3.5 Relatively positioning corners

The last important difference between Program 3.1 and 1.1 is the use of relative positioning of
corners in circle. This is done by evaluating a vector expression at the time when the component
is inputted. The initial positions of all the corners in circle are setup in this manner. To see it
more clearly, consider the following statement in circle,

c 1 @ 0.99*<cb:1>+0.01*<cb:3> -s sc -L cb:1 ;

In the place for an initial position, we find,

@ 0.99*<cb:1>+0.01*<cb:3>

The flag @ indicates that the initial position of this corner is specified as the value of the
vector expression next to it evaluated at the input time. The vector expression, 0.99*<cb:1>+
0.01*<cb:3>, results in a vector which is ‘0.99 times the position vector of the corner referenced
by the 1st element of array variable cb plus 0.01 times the position vector of the corner referenced
by the 3rd element of array variable cb’. Here, < corner reference > means the initial position
vector of the ‘corner reference’d. A vector can also be given in the form with the coordinates
specified, such as {1.1,2,0}.

A complete discussion of vector expressions is left to Chapter 5. A rule that concerns the
evaluation of an expression is: when the current component is a transformed input (translation,
rotation, scaling,...) at the parental level, only directly positioned (without vector expressions
involved) corners, surfaces and inputs in the current component will be transformed.

3.6 Moving COMPONENTs around

There are many ways to program the same topology. This adds the flexibility to best suit
the user’s needs. To prepare for the needs of the example in the next section, we reprogram the
topology design in Figure 3.1 as follows:

Program 3.2 File ‘example12.fra’, another variation of ‘example1.fra’.

SET DIMENSION 2

SET GRIDDEN 16

COMPONENT circleInBox()

BEGIN

s 1 -plane ( 1.0 0 0 0) ;

s 2 -plane ( 0 1.0 0 0) ;

s 3 -plane (-1.0 0 0 160.0) ;

s 4 -plane ( 0 -1.0 0 180.0) ;

INPUT 1 box( sIN ( 1..4), cOUT (2 4..6)) ;

INPUT 2 (50 50 0)*circle( cIN (1:1..4)) ;

END

COMPONENT box( sIN s[0..3] )

BEGIN

c 2 2.5 2.5 0 -s s:0 s:1 ;
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c 4 150 2.5 0 -s s:1 s:2 -L 2 ;

c 5 150 170 0 -s s:2 s:3 -L 4 ;

c 6 2.5 170 0 -s s:3 s:0 -L 5 2 ;

END

COMPONENT circle( cIN cb[1..4] )

BEGIN

s 1 -ellip (0.05 0.05 0) ;

c 1 -20 -20 0 -s 1 -L cb:1 ;

c 2 20 -20 0 -s 1 -L cb:2 1 ;

c 3 20 20 0 -s 1 -L cb:3 2 ;

c 4 -20 20 0 -s 1 -L cb:4 3 1 ;

g 1 cb:1 32;

END

In comparison with Program 3.1, the most significant change is in circle. The main thing
we want to illustrate is how you can input a component with transformed positions from the
original copy and the effects of such transformations.

Consider the input statement in Program 3.2,

INPUT 2 (50 50 0)*circle( cIN ( 1:1..4 ) ) ;

It says ‘input a copy of circle and put it at a position which is translated by the vector
(50,50,0) from the position of the original copy ’. Here (50 50 0) represents a translation operator
and the character ‘*’ means ‘operate on’. The precise effect of this operation is: everything
involving real space positions inside circle except those associated with passing-in variables will
be translated by the vector (50, 50, 0). Things that involve real space positions are either initial
corner positions or surface locations.

Another operator you can use is a linear transformation (rotation, stretching or reflection).
Consider an input statement,

INPUT 2 (0.5 0.861 0 0.861 -0.5 0 0 0 1)*

circle( cIN ( 1:1..4 ) ) ;

In this example, a position vector

 x
y
z

 in circle will be transformed to,

 0.5x+ 0.861y
0.861x− 0.5y

z

 =

 0.5 0.861 0
0.861 −0.5 0
0 0 1


 x

y
z


You can also use more than one operator as shown in the following example,

INPUT 2 (0.5 0.861 0 0.861 -0.5 0 0 0 1)*(50 50 0)*

circle( cIN ( 1:1..4 ) );

When you use multiple operators, a right one will operate on the component before those
on its left. Thus, in the above example, circle is first translated and then rotated.

Notice, the surface definition for the circle becomes a local definition in circle instead of
passing-in from the interface of circle. Notice also, the -t... option is, now, gone from this
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surface. The reason is that this translation is done when circle is inputted in circleInBox. A
consequence of the locally defined circle surface is that every time circle is inputted, a copy
of the circle surface is defined for it. This can be very useful. For example, you can build a
COMPONENT called jetEngine with the engine geometry locally defined in it, and assemble
multiple copies of this jetEngine into the topology design for an airplane without multiply
defining the engine geometry.
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Figure 3.2: Geometry of the region to be gridded.

A more general form of transformation is specified by using vector expressions. In this case,
only one operator can be applied to an INPUT. For more detail, see Chapter 5.

3.7 Including and Reusing old COMPONENTs

Ok, after so many words, you may ask: Is it worth so much trouble to grid such a simple case
which is basically a problem of single block? Well, let us do more with what we have already
gotten. Along with it, we will show you how you can include and reuse components.

Consider adding one more circle of the same size into the configuration in Figure 1.2(a).
Figure 3.6 shows the new configuration. The region to be gridded is outside the circles and
inside the box. The two circles are not assigned with surface labels since the surfaces are defined
inside circle of Program 3.2 which will be used in our new program without changes.

Instead of box, we will design a bit more complicated component called boxes using a lower
level component line. The two components are shown in Figure 3.7. COMPONENT boxes is
built by making six copies of line with proper vertical translations and connections. The corners
in Figure 3.7(b) are not labeled with numbers since they are all from the lower level component
line. The variable referencing labels in Figure 3.7(b) are for passing-out corner variables. Later,
they will be used to connect two copies of circle to boxes.

Now, let us say that line and circle are two basic components that will be used over and
over again (in reality this may not be true!). So we put them together in a file called ‘lib2d.fra’.
Program 3.3 lists ‘lib2d.fra’.
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Figure 3.3: (a) COMPONENT line. (b) COMPONENT boxes built from line.

Program 3.3 A component library file ‘ lib2d.fra’

COMPONENT line(sIN sx[1..2], sy, cIN pl[1..6])

BEGIN

c 1 0 0 0 -s sy sx:1 -L pl:1 ;

c 2 25 0 0 -s sy -L pl:2 1 ;

c 3 75 0 0 -s sy -L pl:3 2 ;

c 4 85 0 0 -s sy -L pl:4 3 ;

c 5 135 0 0 -s sy -L pl:5 4 ;

c 6 160 0 0 -s sy sx:2 -L pl:6 5 ;

END

COMPONENT circle( cIN cb[1..4] )

BEGIN

s 1 -ellip (0.05 0.05 0) ;

c 1 -20 -20 0 -s 1 -L cb:1 ;

c 2 20 -20 0 -s 1 -L cb:2 1 ;

c 3 20 20 0 -s 1 -L cb:3 2 ;

c 4 -20 20 0 -s 1 -L cb:4 3 1 ;

g 1 cb:1 32;

x f 1 3 cb:1 cb:3 ;

END

Here circle is the same as in Program 3.2. The TIL program for the component boxes is
listed below,
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Program 3.4 A part of file ‘example2.fra’

COMPONENT boxes()

BEGIN

s 1 -plane ( 1.0 0 0 0) ; #x1 side

s 2 -plane ( 0 1.0 0 0) ; #y1 side

s 3 -plane (-1.0 0 0 160.0) ; #x2 side

s 4 -plane ( 0 -1.0 0 180.0) ; #y2 side

INPUT 1

line(sIN (1 3),( 2),cIN (-6) ,cOUT (1..6));

INPUT 2 (0 25 0)*

line(sIN (1 3),(-1),cIN (1:1..6),cOUT (1..6));

INPUT 3 (0 75 0)*

line(sIN (1 3),(-1),cIN (2:1..6),cOUT (1..6));

INPUT 4 (0 105 0)*

line(sIN (1 3),(-1),cIN (3:1..6),cOUT (1..6));

INPUT 5 (0 155 0)*

line(sIN (1 3),(-1),cIN (4:1..6),cOUT (1..6));

INPUT 6 (0 180 0)*

line(sIN (1 3),( 4),cIN (5:1..6),cOUT (1..6));

END

Here a negative number in a pair of variable assignment parentheses means assigning NULLs
to certain elements of the variable. For example, (-6) in the line, ‘INPUT 1 line(...)’ means
assigning a NULL to each of the first six elements of variable pl of line. A mixed assignment
of NULLs and non-NULLs is allowed. However, an assignment must match in length with the
variable.

To include the topology design for two circles, the file ‘example2.fra’ now looks like this,

Program 3.5 File ‘example2.fra’

SET DIMENSION 2

SET GRIDDEN 6

INCLUDE "lib2d.fra"

COMPONENT circ2InBox()

BEGIN

INPUT 1 boxes(cOUT c1(2:2 2:3 3:3 3:2),

c2(4:4 4:5 5:5 5:4));

INPUT 2 ( 50 50 0)*circle(cIN (1c1:1..4));

INPUT 3 (110 130 0)*circle(cIN (1c2:1..4));

END

[put Program 3.4 here]

Since the components line and circle are in the file, “lib2d.fra”, it is included with the line,
‘INCLUDE “lib2d.fra”’.

The include-line, ‘INCLUDE “lib2d.fra”’ constitutes the include section of the TIL program.
In general, the include section can contain more than one include-line, each with a different file.
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When an included file is processed, all global assignments are ignored; Component definitions
are taken in; And include lines in the included file are further processed.

To generate a grid, you need to have your run schedule written in the file ‘example2.sch’.
For a simple run, this file can be an exact copy of ‘example1.sch’. The grid generated from
‘example2.fra’ with a schedule the same as ‘example1.sch’ is shown in Figure 3.4.

Figure 3.4: A grid generated from ‘example2.fra’
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Chapter 4

Modifying An Existing Topology

To generate a grid satisfying certain requirements, one may design and try out different
topologies. Quite often, a newer topology differs with an older one by some slight local change.
TIL provides the means to edit your topology. This includes deleting, adding and modifying
operations for the defined surfaces and corners, and for the generated edges, faces and blocks.

The need of topology modification arises also from the need to specify topologies by modifying
those generated from the default rules in GridPro. For example, an ‘x f’ statement can be
used to delete some faces that are otherwise automatically generated by GridPro.

The statements for the modification of existing definitions of corners, edges, faces and blocks
have the general structure that starts with an action key (x – for excluding or a – for adding)
and an object key (e – for edges, E – for surfaces of edges,...) followed by a list of corner and
surface referencing.

The corner and surface references used in such statements must, as usual, be defined before
the statement. However, for a variable reference, a value NULL is allowed. A non-existing object
(edge, face, or block) defined by corners in the list is not an error and the corresponding corners
and surfaces will be ignored.

In what follows, the notations such as Block(4, 6), Face(4, 6), and Edge(4, 6) will be used.
The notation Block(4, 6) is used to mean the block that has corners 4 and 6 as a pair of diagonal
corners. Face(4, 6), and Edge(4, 6) are similarly defined.

4.1 Deleting things from your topology

The x-statement is designed to delete specific topological elements that are generated by the
default rules of GridPro. These pertain to unwanted corners, edges, faces, blocks, and boundary
conditions. We will use examples to illustrate the use of the x-statement.

Deleting corners

Example:

x c 3 c:2 5;

This statement deletes corners 3, c:2 and 5. When a corner is deleted, all the links to it are
also deleted.
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Deleting edges

Example:

x e 3 c:2 5 4;

This statement deletes Edge(3, c:2) and Edge(5, 4). The corners listed must be in pairs.

Deleting faces

Example:

x f 3 c:2 5 4;

This statement deletes Face(3, c:2) and Face(5, 4). The corners listed must be in pairs.

Deleting blocks

Example:

x b 3 c:2 5 4;

This statement deletes Block(3, c:2) and Block(5, 4). The corners listed must be in pairs.

Deleting surfaces from corners

Example:

x C 3 c:2 5 4;

This statement deletes surface 4 from corners c:2, 3 and 5

Deleting surfaces from edges

Example:

x E 3 c:2 5 4 s:2;

This statement deletes surface s:2 from Edge(3, c:2) and Edge(5, 4).

Deleting surfaces from faces

Example:

x F 3 c:2 5 4 s:2;

This statement deletes surface s:2 from Face(3, c:2) and Face(5, 4).

4.2 Adding things to your topology

The a-statement is used to add different items to corners, edges, faces, and blocks generated
by GridPro with default rules. We will again use examples to illustrate the use of the a-statement.
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Adding edges

Example:

a e 3 c:2 5 4;

This statement adds a link from corner 3 to corner c:2, and a link from corner 5 to corner 4.
If the link exists already, no additional link is added. The corners listed must be in pairs.

Adding surfaces to corners

Example:

a C 3 c:2 5 4;

This statement adds surface 4 to corners 3, c:2 and 5. If the surface exists already for the
corner, no additional surface is added.

Adding surfaces to edges

Example:

a E 3 c:2 5 4 s:2;

This statement adds surface s:2 to Edge(3, c:2) and Edge(5, 4). If the surface exists already
for the edge, no additional surface is added.

Adding surfaces to faces

Example:

a F 3 c:2 5 4 s:2;

This statement adds surface s:2 to Face(3, c:2) and Face(5, 4). If the surface exists already
for the face, no additional surface is added.

4.3 Changing a corner’s position

A corner position can be changed by a <..> -statement of TIL. Consider the example:

<c:3> = 0.5*(<c:1> + <c1:2>) ;

The structure here is

< corner ref > = vector expr ;

This example statement sets the initial position of corner c:3 to the value calculated from
0.5*(<c:1> + <c1:2>) which is the middle point of the initial positions of corners c:1 and c1:2.

The reason of using <..> -statements here is that for certain cases whether a run can be
successful depends on the initial positions of corners in certain sensitive areas where grid foldings
can happen easily.
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Chapter 5

Using Vector Expressions to Define
Positions

Vectors and vector expressions present a useful means to setup initial corner positions and
to put geometries in place.

5.1 Declaring vectors

Vectors can be declared inside a COMPONENT, and vector declarations must appear before any
statement in the COMPONENT. A vector declaration starts with the type keyword VECTOR followed
by one or more vector variable names with or without range specifications. A COMPONENT may
have more than one vector declaration. Let’s look at an example vector declaration section of a
COMPONENT,

COMPONENT junk()

BEGIN

VECTOR x[3..10],r;

VECTOR ix;

.

.

.

The first vector declaration declares a vector array named x with its element range from 3
to 10, and a vector variable named r. The second vector declaration declares a single vector
variable ix.

A vector behaves very much like a corner as far as the position attribute of a corner is
concerned. Therefore, vectors can be passed in and out of COMPONENTs in the same fashion
as corners do; Likewise, corners can be used in and evaluated with vector expressions, just as
vectors do. Hence, unless explicitly stated, the phrase “a vector variable” in this manual can
mean either the position attribute of a corner variable or a vector variable defined with a VECTOR
declaration.

Since a variable in a COMPONENT interface is passed by reference (FORTRAN - like) rather
than by its value, a change to a vector’s value in a child level will be carried back to the parent
level upon the return from the child COMPONENT.
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5.2 Where can vector expressions be used ?

Vector expressions can be used to define a physical space position in various places in a TIL
program. For all these situations, except evaluating a vector with a “< > =...” statement,
a character ‘@’ indicates the use of vector expressions. One needs to remember that both
using vector expressions in a COMPONENT and using transformation operators when INPUTting
this COMPONENT the same time without understanding the interaction between them may cause
unexpected results. In the following subsections, we sequentially examine the uses of vector
expressions. The above mentioned interaction will be also discussed.

5.2.1 Evaluating a vector variable

A vector variable can be evaluated by a <var> =vexpr statement.

Example:

<c:1> = {1.2,0,0} + <x> + <y>;

It evaluates the vector variable c:1 to be the sum of the three vectors in the vector expression
on the right hand side of the equal sign, namely {1.2,0,0}, <x> and <y>.

If c:1 is, in fact, a corner variable, this statement changes the initial position of the referenced
corner.

5.2.2 Setting a corner’s position

A corner’s initial position can be set by using a vector expression in the place of the initial
coordinates in the c-statement.

Example:

c 3 @ <ctr> + <x> - <y> -s 1 -L 2;

The symbol ‘@’ here indicates that a vector expression follows. The initial position of corner
3 is set to the resulting value of evaluating the vector expression.

To stress the difference between the two methods of defining the initial position of a corner,
let’s examine the following segment of a TIL program,

c 3 1 2 3 -s 1 -L 2;

c 4 @{1,2,3} -s 1 -L 3;

On the first look, one may think that corners 3 and 4 have the same initial position. However,
this observation may or may not be correct, and it all depends on whether the COMPONENT

containing the two statements is transformed or not when it is INPUTted. The initial position of
corner 3 is transformed by the same transformation operations that are acting on the COMPONENT;
while the initial position of corner 4 is not affected by them. In fact, this is a general rule for
all vector expressions.

5.2.3 Define some built-in implicit surfaces

Two of the built-in implicit surfaces can be defined with vector expressions. For a surface of
type -plane, one can, instead of using -plane(a b c d), use
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-plane@(norm vexpr,point vexpr)

Here norm vexpr is the normal vector of the plane and point vexpr is a point on the plane.

Example:

s 2 -plane@(<x>^<y>, {1,0,0});

This statement defines a plane surface that has the cross product <x>^<y> as its normal
vector and it passes through the point {1,0,0}.

The parameters for a surface of type -ellip can be set with

-ellip@(u vexpr, v vexpr, w vexpr, t vexpr).

where u vexpr, v vexpr and w vexpr are the three semi-axes of the ellipsoid and t vexpr is the
center of the ellipsoid. To be more precise, let’s denote U, V, W and T to be the resulting
vectors of u vexpr, v vexpr, w vexpr and t vexpr respectively and denote Ux, Uy and Uz to be
the three components of vector U, and so forth.

The surface is now defined by the equation,

u2 + v2 + w2 = 1.

where (u, v, w) is obtained via solving, x
y
z

 =

 Ux Vx Wx

Uy Vy Wy

Uz Vz Wz


 u

v
w

+

 Tx

Ty

Tz

 .

5.2.4 Transformation operators for surfaces

When vector expressions are used for the transformation of surfaces, only the ‘-t’ operator
is allowed (‘-R’ is not allowed). In this case ‘-t’ means a general transformation, instead of
just a translation. The arguments for a ‘-t’ operator have a general form as follows:

-t @(t vexpr, x vexpr, y vexpr, z vexpr)

Here t vexpr is the translation part of the transformation, and x vexpr, y vexpr and z vexpr
are the rotation (and stretching) part of the transformation. A short form of the operator can
be used:

-t @(t vexpr)

In this case, the rotation (and stretching) part of the transformation is an identity matrix.
Let’s denote X, Y, Z and T to be the resulting vectors of x vexpr, y vexpr, z vexpr and

t vexpr respectively and denote Xx, Xy and Xz to be the three components of the vector X,
and so forth. Let (x, y, z) and (x′, y′, z′) be the corresponding surface points before and after
the transformation respectively. Then, (x, y, z) and (x′, y′, z′) are related by the equation, x′

y′

z′

 =

 Xx Xy Xz

Yx Yy Yz

Zx Zy Zz


 x

y
z

+

 Tx

Ty

Tz

 .

An example is shown below,

s 3 -linear "surf1.dat" -t @({1,2,3}, <x1>^<x2>, 2*<y>, <z>) ;
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5.2.5 Transformation operators for INPUTs

The transformation operators using vector expressions for an INPUT statement have the
same format as for an s-statement in the previous subsection, except that only the long form
is allowed. The corresponding points before and after the transformation also have the same
relation as in the previous subsection. The following line is an example TIL line,

INPUT 3 @({1,2,3}, <x1>^<x2>, 2*<y>, <z>) * test(cIN (c:1..8)) ;

5.3 Vector and scalar expressions

Scalar expressions are used to construct vector expressions. Some commonly used operators
are defined in GridPro. The precedence and associativity of these operators are also as commonly
defined. When it is not clear, a good practice is to use parentheses to group things.

The following operators can be used for vector expressions:

(vexpr) – Grouping; Has the highest precedence.
sexpr * vexpr
vexpr * sexpr – Scalar product.
vexpr ^ vexpr – Cross product.
[vexpr] – Normalizing a vector.
far(vexpr) – get the furthest axis from vexpr.
vexpr + vexpr – Vector sum.
vexpr - vexpr – Vector subtraction.
-vexpr – Reversing the vector direction.
<var> – referencing a vector variable or the position

of a corner variable.
{x sexpr, y sexpr, z sexpr}

–Vector with its components evaluated via scalar expressions.

The following operators can be used for sexpr:

(sexpr) – Grouping.
sexpr * sexpr – Product.
vexpr * vexpr – Dot product of two vectors.
|vexpr| – Length of a vector.
(vexpr).x – x component of a vector.
(vexpr).y – y component of a vector.
(vexpr).z – z component of a vector.
sexpr / sexpr – Scalar division.
sexpr + sexpr – Scalar sum.
sexpr - sexpr – Scalar subtraction.
-sexpr – unary minus.
d – a real number.
sin(sexpr), cos(sexpr), sqrt(sexpr), min(sexpr1,sexpr2)
max(sexpr1,sexpr2)

– as usual.
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To illustrate the use of vector and scalar expressions, let’s look at some examples:

<x> – the vector value of the vector variable x.
{1, 2, 3} – vector by specifying the components.
<c:1>^<x> – cross product of two vectors c:1 and x.
{(<x>).z, 1.2,cos((<y>).x)}

– a vector with its x-component=z-component of x, y-component=1.2,
and z-component = cos(x-component of y).

0.8*<c:1> + 0.2*{1,1,2}

– 0.8 times vector c:1 plus 0.2 times vector {1,1,2}.

5.4 Mixed use of vector expressions and INPUT transformations

Mixing the use of vector expressions and INPUT transformations provides the good things
from both worlds, namely the flexibility of vector expressions and the simplicity of INPUT

transformations. However, pitfalls do exist, unless one understands how GridPro treats this
kind of mixing, since what GridPro will do in this situation may or may not be the same as
what one might think GridPro should do, though GridPro has adopted the rules as intuitively
as possible.

A TIL code with multiple levels of INPUTs has a simple tree structure. In the process that
GridPro parses a TIL code, it is expanded into a linear chain of topology construction operations,
such as corner creation and surface loading. After a corner or vector come into existence, it may
have different current coordinate positions at different points on this linear chain.

The corners and vectors are handled differently:

1) A corner defined in a COMPONENT gets a new copy and id every time the COMPONENT is
INPUTted; while a vector defined in a COMPONENT shares the same memory for all the INPUTs of
the COMPONENT. For example, look at the following segment of TIL code,

COMPONENT junk()

BEGIN

INPUT 1 test(cOUT corn(c),vect(v));

<1corn> = {1,0,0};

<1vect> = {2,0,0};

INPUT 2 test(cOUT corn(c),vect(v));

PRINT(‘‘1corn=(%v),2corn=(%v),1vect=(%v),2vect=(%v)\n’’,

1corn,2corn,1vect,2vect);

.

.

END

COMPONENT test()

BEGIN

VECTOR v;

<v> = {0,0,1};

c 1 @{0,0,0};

END
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When it is run, one would get the screen print out,

1corn=(1 0 0),2corn=(0 0 0),1vect=(0 0 1),2vect=(0 0 1)

2) When GridPro is finished with processing an INPUT, the transformation on the INPUT is
applied to the current coordinate position of all the corners created under the given INPUT to
define the new current coordinate position; while all the vectors are left un-transformed.

3) All the vector expressions are evaluated using the current coordinate positions of its
constituents.

A safe practice is that whenever an INPUT transformation is used do not pass in any vectors
and do not use passing-in corners for vector expressions in the INPUTted COMPONENT(you may
still use passing-in corners for linking purposes).



Chapter 6

Doing I/O In TIL Programs

To start, let’s first make a distinction between different types of I/Os. The I/O operations
of TIL programs are not the same as the I/O operations of GridPro as a whole unit. While the
later specifically means the input and output of grid data and connectivity data, the former is
for inputting and outputting parameters to set up and debug the topology.

This chapter is concerned with the former type of I/O operations. These operations provide
more flexibility and reusability to the topology designed. For example, a topology design can be
used for configurations with different scales simply by reading in a few scale parameters without
the need to change things inside the TIL code. Five types of statements with key words OPEN,
CLOSE, READ, WRITE and PRINT respectively are used for I/O operations. They can appear in
different levels of components.

6.1 OPEN and CLOSE files

Before a file can be accessed in a TIL program, it must be opened with an OPEN statement,
which has the following syntax:

OPEN(unit, "file name", access mode);

Here, unit is an integer labeling the opened file. It is global in the sense that an opened unit
in one component can be referred in another component and it stays open until it is explicitly
closed with a CLOSE statement. The unit is a number with a value from 1 to 64 and up to 64
files can be opened simultaneously. To reopen an opened unit is an error.

The second argument specifies the name of the file to be opened. It must be in double quotes.

The access mode is one of the three key words, READ, WRITE and APPEND. For the READ mode,
attempting to open a nonexisting file is an error. If the file does not exist under the APPEND

mode, the effect is the same as for WRITE.

An opened file can be closed with a CLOSE statement,

CLOSE(unit);

A closed unit can be reused in future OPENs.
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6.2 READ and WRITE ( and PRINT ) files

PRINT is very similar to WRITE except that the writing is on the terminal screen. Both READ

and WRITE require a unit number as the first argument. If the unit is not opened, the I/O will
read from the keyboard and/or write to the screen.

Only vectors can be read with a READ statement under the current implementation. Every
READ causes the opened file to advance one line.

Let’s examine the sample statement,

READ(3,"%v %v %v %v",c:1,2,1:1,v);

The first argument 3 is the unit number. The string in the double quotes is a conversion format
for the current line of unit 3. The rest of the arguments are corner or vector variables.

Each %v in the conversion format converts a group of three numbers in the current line to a
vector and assigns it to the corresponding subsequent argument.

A WRITE statement has a similar syntax except that it has more types of conversions. The
following statement is an example,

WRITE(4,"Hi:pos=(%v),id=%m\n trace= %t \n",c:1,c:2,c:3);

With this statement, two lines are written to unit 4. The format string contains conversion
symbols %v, %m and %t, and some other characters. In the output produced with this statement,
the conversion string %v is replaced by the position vector of the first variable c:1 in the variable
list following the format; %m is replaced by the internal id of c:2; and %t is replaced by the trace
of c:3. Of course, the internal id and trace information are only meaningful for corners. Each
\n is a new-line symbol in the output. Therefore, the above statement produces two lines in
unit 4. They may look like this,

Hi:pos=(1 3.435 2.2), id=312

trace= 2:1:5:7



Chapter 7

Surface Specifications

This Chapter will be mainly concerned with surface specifications and their relation to surface
definitions in the TIL programs. Some topics related to surfaces, such as, internal surfaces,
overlapping surfaces and surface assignment rules will not be discussed here (see Chapter 2).

7.1 Surface classifications

7.1.1 Surface types

Every surface definition statement in a TIL program contains a flag for surface type. Surface
types are used to indicate the format and structure of surface data. There are seven surface
types in the current implementation of GridPro. A surface type belongs to one of the two group
types used in GridPro.

The first group type is implicit (analytic) type. In this case, a surface is defined as an equal
potential surface of a scalar valued analytic function of the position vector (x, y, z). Some of
the simple forms of the functions are hard wired into GridPro. They are called built-in implicit
types and are listed below,

-plane --- plane surfaces.

-ellip --- (super) ellipsoid surfaces.

-xpolar --- used for periodic BC in polar coordinates.

-xyz --- used for periodic BC in cartesian coordinates.

For non-builtin implicit surfaces, there is a type,

-implic --- general implicit surfaces.

The second group type consists of explicit surfaces. This group type can also be called the
parametric type for the reason that a surface point can be determined by the values of a set of
parameters.

In current implementation, it contains the following surface types,

-linear --- a) single patch bilinear parametric surfaces.

b) surfaces composed of multiple patches of bilinear

parametric surfaces.

-quad --- surface of unstructured quadrilateral elements.

-tria --- surface of unstructured triangular elements.

-tube --- surface of revolution around a center curve.
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A surface of this group is usually specified by a fair amount of data stored in a separate
file(s).

7.1.2 Boundary modes

Boundary modes distinguish between different constraints on surfaces. Boundary modes are
not explicitly specified in TIL programs. Whether a surface is of a certain boundary mode is
determined by how the surface is used in GridPro. There are three boundary modes in GridPro:
the fixed-surface mode, the periodic-surface mode and the float surface mode.

A surface of the fixed-surface mode has a fixed position in space. Most surfaces are used in
this mode. They can be further divided into external surface mode and internal surface mode
(see Chapter 2).

A surface in the periodic-surface mode has no fixed position in space. These surfaces are
used to provide periodic boundary conditions. A surface in such a mode must be of an implicit
type; that is, periodic boundary conditions have to be provided through analytic functions.

A surface in the float surface mode is an internal surface without location constraints. It is
not a surface in the conventional sense. It is only a convenient way of grouping block faces, so
that clustering can be done for them.

7.2 Fixed-surfaces – Implicit types

Under the fixed surface mode, an implicit surface is a surface specified by an equation in the
form,

u(x, y, z) = 0

In general, u(x, y, z) may be any function that can be programmed in C and satisfies the
following conditions:

1) u(x, y, z) is defined in a neighbourhood of the surface u(x, y, z) = 0. The neighbourhood
should cover a domain larger than that expected for the initial positions of the corners which
are assigned for the surface.

2) At any point in the intended physical domain, u(x, y, z) should have a well defined gradient
vector pointing to or away from the surface. The dependency of the gradient vector on (x, y, z)
should be smooth.

3) The gradient vector of u(x, y, z) should point into the region to be gridded.

7.2.1 Built-in implicit surfaces

Certain simple forms of implicit surfaces are built in with GridPro. They are:

The plane surface (-plane)

Example surface definition statement:

s 3 -plane (0.1 0.2 0.3 0.4);

This statement defines surface 3 as a plane surface specified by the equation 0.1x + 0.2y +
0.3z+0.4 = 0 with the surface normal vector given by (0.1, 0.2, 0.3). Notice that the parameter
values to specify a given plane surface are not unique. They can be scaled by any fixed positive
or negative constant without changing the surface. However, a negative scaling changes the
direction of the normal vector (i.e. the orientation) of the plane.
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The (super) ellipsoid surface (-ellip)

Example surface definition statement:

s 3 -ellip (0.1 0.2 0.3 4.0);

This statement defines surface 3 as a super ellipsoid specified by the equation |0.1x|4 +
|0.2y|4 + |0.3z|4 − 1 = 0. The gradient of the surface function u(x, y, z) = |0.1x|4 + |0.2y|4 +
|0.3z|4 − 1 is pointed to the outside of the super ellipsoid. The user must supply an orientation
change operator ‘-o’ when the gridded region is inside the ellipsoid (i.e. when the ellipsoid is an
outer boundary). For a regular ellipsoid, the value for the power parameter is 2 (instead of 4 in
the above example). The statement can be

s 3 -ellip (0.1 0.2 0.3 2.0);
or

s 3 -ellip (0.1 0.2 0.3);

7.2.2 Non-builtin implicit surfaces

A non-builtin implicit surface can be specified in the form of a ‘.h’ file with the syntax of
the C preprocessor. The up side of this is the flexibility of using different functional forms; The
down side is that extra steps must be taken to compile a user generated function library in C
and link it to the main module of GridPro before running GridPro.

Example surface definition statement:

s 3 -implic “torus.h”;

This statement defines surface 3 to be an implicit surface as specified in the file “torus.h”.
Let us say that we want “torus.h” to define a torus as follows: The central circle of the torus

is on the y-z plane and is centered at origin with a radius 1.5. The cross-sectional circle of the
torus has a radius of 0.5. The region to be gridded is inside the torus. The file “torus.h” is
listed below,

Program 7.1 File “torus.h”

#define FUNCU ya=sqrt(y*y+z*z)-1.5, \

1.0 - (ya*ya + x*x)*4 /* Define torus surface*/

#define Ulen -1.0 /* -1.0 for no period */

For those who do not have experience in the C programming language, three comments are
in order: 1) A matching pair of ‘/*’ and ‘*/’ with everything in between will be ignored by the
C compiler. They can therefore be used to make comments. 2) A ‘\’ character at a line end
continues this line to the next. 3) Each ‘#define’ line defines a macro with the name of the
macro and the content of the macro following.

If you want to define a different surface, you can copy this file and change the contents of
the two pre-named macros, FUNCU and Ulen.

For Ulen>0, ‘FUNCU modulo Ulen = 0’ specifies the surface; Otherwise ‘FUNCU = 0’ specifies
the surface.

In defining these macros, (x, y, z) are the input variables. Also available are 11 sets of
auxiliary variables, (xa, ya, za), (x0, y0, z0), .. , (x9, y9, z9). They can be used to construct a
surface function. These intermediate variables provide the opportunity to segment the surface
formulation and to, thereby, achieve clarity. The segments are separated by the “,” operator.
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7.3 Fixed-surfaces – Explicit types

7.3.1 Surfaces of quadrilateral elements

Single patch bilinear parametric surface (-linear)

Example surface definition statement:

s 3 -linear “surf1.dat” [boundary conditions] ;

This defines a local bilinear parametric surface with certain [boundary conditions]. The
surface is specified by an IxJ array of grid points for some I and J in the file “surf1.dat”. The
bilinear interpolation is used to determine the surface points within the array cells. No collapsed
cells or merged data points are allowed.

The data format in file “surf1.dat”: The first line of the data file lists I and J. The
subsequent lines list the three coordinates of a surface grid point in the order of increasing J,
then I. In terms of FORTRAN, the data can be read by a program as follows:

READ(UNIT,*) IMAX,JMAX

DO 10 I=1,IMAX

DO 10 J=1,JMAX

10 READ(UNIT,*) X(I,J),Y(I,J),Z(I,J)

The [boundary conditions] in the example line specifies how the boundaries of the surface
piece should be treated by GridPro. The options are:

+i – i=0 link to i=0 side
-i – periodic in I direction
+I – i=IMAX link to i=IMAX side
+j – j=0 link to j=0 side
-j – periodic in surface J direction
+J – j=JMAX link to j=JMAX side

At most, one of the +i,-i,+I options and one of the +j,-j,+J options can be used for a
surface definition statement.

Instead of the inline [boundary conditions], a connectivity file named surf1.dat.conn can
exist to provide connectivity information. In any case, if there is no inline [boundary conditions]
or there is the file surf1.dat.conn, the surface is treated as a special case of multi-patch
surfaces, discussed in the next subsection.

The natural surface orientation is defined by the normal vector î × ĵ where î and ĵ are the
unit vectors along the i index and j index directions respectively for any of the array points that
determine the surface. If the natural orientation is not the same as expected (i.e. the positive
side of the surface should be facing the region to be gridded), the reversing orientation flag -o

can be placed in the surface definition statement as follows,

s 3 -linear “surf1.dat” [boundary conditions] -o;

Note that, a surface here is specified by a grid which, however, is not the same as the surface
grid generated with GridPro. The relation between them is that the generated surface grid will
be on the surface which is specified by yet a different grid.
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Multiple patch bilinear parametric surfaces (-linear)

A surface can be specified by multiple patches. The type for it is again -linear. Two files
are involved to specify a surface of this type; namely, a data file which contains a sequence of
surface patches, and a connectivity file which provides the information as to how the patches in
the data file are connected. The format for each of the patches in the data file is the same as
the single patch surface.

The requirements on the connections between different surface patches are very mild. They
only need to be nearly-full face matchings. To understand it, you can imagine that a surface is
composed of full face matching quadrilateral patches. However, the data specifying the surface
on a patch does not need to exactly cover that patch. There can be gaps between adjacent
surface patches. Preferably, the gap scales are smaller than the element (cell) scale of the
surface patches near the gaps. However, no overlaps are allowed.

Example surface definition statement:

s 3 -linear “surf1.dat”;

File “surf1.dat” is also called the data file. An associated connectivity file that has the name
“surf1.dat.conn” may or may not exist. If “surf1.dat.conn” does not exist, GridPro will
use the surface data to generate it by some default rules.

“surf1.dat.conn” contains the information how the surface pieces are connected. An
example of the connectivity file consists of the following lines,

1 6 1 6 -1 2 2 0 0
2 3 1 3 -1 1 2 0 0
3 2 1 2 -1 4 2 0 0
4 5 1 5 -1 3 2 0 0
5 4 1 4 -1 6 2 0 0
6 1 1 1 -1 5 2 0 0

Each line here defines a surface piece and its connection to other pieces. It has the following
format,

sp id nxi sdi nxI sdI nxj sdj nxJ sdJ

sp id – An id number that labels the surface piece. It should appear sequentially and corre-
spond to the data piece in the data file.

nxi sdi – Boundary condition for the i = IMIN side of current surface piece. nxi provides the
neighboring surface piece id. nxi=-1 means no neighbor surface piece. sdi indicates which
side of the neighbor surface piece is connecting to the i = IMIN side of current surface
piece. Values sdi=1,-1,2, and -2 mean the i=IMIN side, i=IMAX side, j=JMIN side, and
j=JMAX side respectively. If nxi≤0, the value of sdi is irrelevant.

nxj sdj – Boundary condition for the j = JMIN side of current surface piece.

nxI sdI – Boundary condition for the i = IMAX side of current surface piece.

nxJ sdJ – Boundary condition for the j = JMAX side of current surface piece.

The orientation of the surface will be synchronized to that of the first piece.
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Figure 7.1: An example of a surface of quads with two quads.

Surfaces of unstructured quad elements

A surface point is specified by bi-linearly interpolating on the quad elements.

Example surface definition statement:

s 3 -quad “surf1.dat”;

GridPro will interpret the data format according to the contents of the data file. It may
be in one of the two implemented formats. The first is the small field Nastran bulk data fixed
or free format, where the GRID entry is used to define a node coordinate position, and the
CQUAD4 or CQUADR entry is used to specify a quad element (for detail see MSC/NASTRAN
Quick Reference Guide).

The implementation is a subset of MSC/NASTRAN’s specification. In particular, the
replication capability is not implemented. That is, data entries should not contain the ‘=’ and
‘*’ operators. For the free format, GridPro requires that data entries are separated by commas.

The second data format is the GridPro format used by GridPro. As an example, ‘surf1.dat’
may consist of the following lines:

6

801.97693 -7.0479345 -23.675423

886.42688 14.096904 -15.55965

942.72565 28.191708 -10.122647

999.00952 42.283035 -4.6956768

1055.3088 56.378807 0.71006197

1111.5261 70.471634 5.0577559

2

1 3 2 4 0

6 5 4 1 0

It is a node list followed by a quad list. The first line specifies that there are 6 nodes in
this file. It is followed by the coordinates (x y z) of the 6 nodes (one node per line). The next
line indicates that there are 2 quads in the data. Then, each of the following lines specifies the
4 node numbers and 1 property id for that quad. The node numbers are ranging from 1 to 6
corresponding to the nodes in the node list. In this case, quad number 1 is formed by nodes 1,
3, 2, and 4, and quad number 2 is formed by nodes 6, 5, 4, and 1. The property id is not used
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in the graphical manager and Ggrid. It is used in some utility calculations. Therefore, the value
of property id can be arbitrary here.

The listing order of node ids for a quad should be circling about the quad in either of the
two possible directions. No more than one of the 4 sides of a quad may be collapsed either by
having the same node id or by having a single space position. Small holes are allowed on the
surface.

The natural orientation of a quad surface is determined by the first quad in the quad list.
The positive side of the surface is the side where when one faces the first quad, the listing order
of nodes that defines the quad rotates anti-clock wise (right hand rule).

7.3.2 Surfaces of triangular elements (-tria)

There is one type in this category, namely ‘-tria’. The data formats are similar to that of
unstructured quad surfaces. Mainly, the differences will be pointed out here.

1) The Nastran data format entries used here are GRID, CTRIA3, and CTRIAR.

2) In the GridPro format, the element is defined by 3 nodes.

Example surface definition statement:

s 3 -tria “surf1.dat”;

In the GridPro format, ‘surf1.dat’ may consist of the following lines:

4

886.42688 14.096904 -15.55965

942.72565 28.191708 -10.122647

999.00952 42.283035 -4.6956768

1055.3088 56.378807 0.71006197

2

1 3 2 0

4 1 2 0

Here we have 4 nodes and 2 triangles. No degenerate sides are allowed for any of the
triangular elements.
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Figure 7.2: An example of a surface of triangles with two elements.
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7.3.3 Surfaces of revolution (-tube)

A surface of this type is specified by the revolution around a digitized center curve. Therefore,
it is a more general type of surface of revolution.

Example surface definition statement:

s 3 -tube “surf1.dat”;

Here ‘surf1.dat’ contains the data for the digitized center curve. It can be read via,

READ(UNIT,*) IMAX

DO 10 I=1,IMAX

10 READ(UNIT,*) X(I),Y(I),Z(I),R(I)

Where X(I),Y(I),Z(I) are the coordinates of the Ith center curve data point and R(I) is the
radius of revolution for the data point.

The center curve point, the center curve tangent and the the radius of revolution are linearly
interpolated from the center curve data.

The revolution for each point on the center curve is performed in the normal plane of that
point with respect to the tangent of the curve. Thus, this type represents tube - like surfaces
with curved center line and variable radius.

To avoid ill-specified surfaces, the circular disks bounded by the circle generated by the
revolution for any two center curve data points should not intersect each other.

The natural orientation is pointed to the outside of the tube section defined by the first two
data points on the center curve. Therefore the first two data points should not have the same
position in space. However, in general two center curve data points can have the same position
in space, as long as the radii are different.

An interesting example is a torus surface. There are two ways to represent it with surface
type ‘-tube’. The first is to digitize the center circle of the torus, and use a constant radius for
all of the center curve data points. The second way is to digitize the axis of rotational symmetry,
and use a variable radius to represent the cross-sectional circle of the torus.

For both cases, the ‘-i’ flag must be given to the surface definition statements to indicate
that the center curves have a periodic boundary condition on them.

7.4 Periodic surfaces

A periodic surface is a surface used in the periodic mode; that is, it is used to determine a
periodic boundary condition for the grid to be generated. The word “periodic” here should not
be confused with the the word “periodic” used to indicate the periodic boundary condition for a
surface. A surface may have loops that are closed with such conditions (instead of, for the grid
to be generated).

A surface used to specify a periodic boundary condition has different and stronger
requirements on the surface functions. More precisely, a periodic boundary condition is specified
by providing a non-singular coordinate transformation in the form,

U = u(x, y, z)
V = v(x, y, z)
W = w(x, y, z)
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A surface with the given periodic boundary condition is selected by GridPro among all the
surfaces satisfying the condition,

u(x, y, z) − u(xid, yid, zid) = period
v(x, y, z) − v(xid, yid, zid) = 0
w(x, y, z) − w(xid, yid, zid) = 0

on every pair of grid points (x, y, z) and (xid, yid, zid), for which the identifying relation is defined
by i-statements in the TIL program.

7.4.1 General implicit surfaces (-implic)

Similar to a non-builtin implicit surface in the fixed surface mode, an implicit surface in
the periodic surface mode can be specified in the form of a ‘.h’ file with C control-line syntax.
In terms of their appearance as s-statements, there is no difference, except the period must be
provided on the surface definition line in the TIL code. For example,

s 3 -implic “polar for z.h” 30.0;

where 30.0 indicates the period.

However, in the ‘.h’ file, 9 pre-named macros are used.

FUNCU, Ulen, FUNCV, Vlen, FUNCW, and Wlen are used to define the forward
transformation from (x, y, z) to (u, v, w) and FUNCX, FUNCY, and FUNCZ are used to define the
inverse transformation from (u, v, w) to (x, y, z). At run time, the consistency of the inversion
is checked using the initial positions of all the grid points assigned to the involved surface.

The way to define FUNCU, Ulen, FUNCV, Vlen, FUNCW, and Wlen is the same as for a
non-builtin implicit surface in the fixed surface mode. However, to define FUNCX, FUNCY, and
FUNCZ, one needs to use (u, v, w) as input variables instead of (x, y, z). For the details, see the
next subsubsection.

7.4.2 The polar periodic BC (-xpolar)

One of the hard wired implicit surfaces is for the periodic boundary condition on the angular
coordinate in the polar coordinate system with x-axis as the rotation axis. The angle is measured
in degrees.

Example surface definition statement:

s 3 -xpolar 30.0;

where 30.0 indicates the period is 30 degrees. There is no other data specification needed.

The transformation used is,

U = atan( zy ) · 180/π
V = x

W =
√
z2 + y2

Two points identified by this periodic surface condition will have the same V and W values
and a fixed difference in U .

The corresponding ‘.h’ file would appear as,
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Program 7.2 File ‘period.h’

#define FUNCU ((180/PI)*atan(z/(y+dsig(y)*1.0e-30))+((y<0)? 180 : 0))

#define Ulen ( 360 )

#define FUNCV x

#define Vlen (-1.0)

#define FUNCW sqrt(z*z+y*y)

#define Wlen (-1.0)

#define FUNCX v

#define FUNCY (w*cos(u*PI/180))

#define FUNCZ (w*sin(u*PI/180))

Here, certain things are added in to prevent an over flow condition. PI and PI2 are predefined.
At the end of FUNCU, ‘((y<0)? 180 : 0))’ means that if y < 0 then the value is 180; otherwise
it is 0. This is just some C programming syntax.

Rotation and translation operators can be applied in the s-statement to change the rotation
axis of the polar system. For the polar system with z-axis as the rotation axis, one has,

s 3 -xpolar 30 -R 0 0 1 0 1 0 1 0 0;

7.4.3 The cartesian periodic BC (-xyz)

The other hard wired implicit surface is for the periodic boundary condition on the x-axis
in the cartesian coordinate system.

Example surface definition statement:

s 3 -xyz 2.5;

where 2.5 indicates the period is 2.5. There is no other data specification needed.
The transformation used is,

U = x
V = y
W = z

Two points identified by this periodic surface condition will have the same V and W values
and a fixed difference in U (hence x).

The corresponding ‘.h’ file would appear as,

Program 7.3 File ‘period.h’

#define FUNCU (x)

#define Ulen (-1.0 )

#define FUNCV (y)

#define Vlen (-1.0)

#define FUNCW (z)

#define Wlen (-1.0)
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#define FUNCX u

#define FUNCY v

#define FUNCZ w

Rotation and translation operators can be applied in the s-statement to change the rotation
axis of the polar system. For the cartesian system with z-axis as the periodic axis, one has,

s 3 -xyz 2.5 -R 0 0 1 0 1 0 1 0 0;

7.5 Float surfaces

As we said earlier, the purpose of float surfaces is to provide a convenient way of grouping
block faces, so that clustering can be applied for them. Unlike surfaces in other modes, there is
no location constraints on a float surface. An example statement is:

s 1 -float +c 0.01;

Here the float mode is indicated by the type parameter -float, and the average spacing on
either side of the surface is 0.01. Other than that, there is no location constraint and it can
be internal to the topology (that is, blocks can be on both sides of the surface), the use of a
float surface is very similar to that of a fixed surface. In particular, corners can be assigned to
the surface; And the surface can be added to or deleted from a corner, an edge, or a face. The
clustering is turned on or off along with the corresponding clustering group. However, when one
assigns corners or other objects to a float surface, they must satisfy a consistent requirement.
That is, all the block faces on a float surface must be in the same face sheet. In turn, a face
sheet is defined as a side of a block sheet. Note that one can have a part of a face sheet assigned
to a float surface.

Clustering may also be applied for only one side of the surface. A statement such as,

s 1 -float 0 +c 0.01;

will apply clustering for the side 0. The other side is side 1. The determination of side 0 or 1 is
best done by experiment.

7.6 Surface transformations

In the TIL code, a surface can be linearly transformed and translated with the corresponding
option flags and arguments in the s-statement. The vector expression form of such
transformation is explained in Section 2.4 of Chapter 5.

7.7 Surface conditions

In this section, we will discuss certain requirements that GridPro imposes on the surfaces.
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7.7.1 Smoothness

A surface used by GridPro must be “smooth” . However, whether a given surface is smooth
or not strongly depends on the topology you choose for the blocks on that surface.

To illustrate the concept of smoothness here, let’s use a simple example. Consider an airfoil
with a sharp trailing edge. Suppose that the airfoil is specified by a surface of type -linear

with a dense enough supply of points. Then, most of the places on the surface are smooth for
GridPro. However at the sharp trailing edge, when one goes from one surface data point to
another, the surface tangent vector will turn by a very large amount (close to 180◦).

For the case where a C-cut topology is used, a block boundary is forced to go to this point.
Therefore, the sharp trailing edge will not cause a problem and the surface will be regarded as
smooth.

On the other hand, if an O-type topology is chosen, GridPro will automatically distribute
grid points taking the airfoil as a seamless whole. In this case, the surface point on the sharp
trailing edge will be treated the same as any other surface point and the large tangent turn will
be regarded as non-smooth.

For a non-smooth surface, it can be restructured by adding surface data points to round off
those large tangent turns. In doing so, the surface shape may be changed slightly, but since it
can be done at a very fine scale, the changes should not affect the flow field solutions.

One should also avoid specifying a surface with too many data points since it wastes both
memory and CPU time. In terms of tangent turning rates, limiting to less than 1◦ turns will
give very good surface specifications, even though GridPro can handle tangent turns as large as
90◦, provided that they do not form clusters or sharp points.

7.7.2 Intersections

In general, if two surfaces are supposed to intersect, the surface specifications should be
provided to extend somewhat beyond the intersection. GridPro will determine the actual
intersection automatically once the extensions are in place.
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Appendix A

Quick Reference to Schedule Syntax

A schedule file consists of two sections: A mandatory schedule section and an optional output
section. A line is continued to the next by ending with a ‘\’ character.

Conventions: When a num is used to refer to a corner or surface, it represents an internal
corner or surface id, which can be obtained through running GridPro in the debug mode or with
a proper PRINT.. statement in the topology file. A label is a name string defined in the TIL
program for a collection of objects of the same type. An object is either a corner, an edge, a
face, a block or a surface.

A.1 Schedule section

The schedule section is composed of a sequence of steps with the syntax as follows:

step num: actions

where num is a step label and actions is a sequence of actions that will be executed from left to
right. Step is a convenient way to group actions to be executed. The steps are executed one by
one. If a step is in the gap of the steps listed in the schedule file it is implied that the actions
for this step are the same as those of the next nearest step explicitly specified in the file. The
syntax of most actions has two basic structures:

1) –flag {obj list} {parameters} and

2) –flag obj parameter obj parameter ... .

The possible actions for a step are:

-g label num...
— Change the grid density on edges collected in label to num. If numis 0, the edges with
the label are redesignated as default edges and assigned the default grid density.

-g label dx ...
— Change the grid density for edges collected in label to dtimes the current density
rounding off to the integer part.

For the -g action, label can be predefined words ‘ALL’ or ‘all’ to mean all edges, and
‘DEF’ or ‘def’ to mean the edges with default grid density (default edges).

-a label num...
— Accelerate the convergence of blocks collected in label with a loop count num.

65
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-a num1 num2 ...
— Accelerate the convergence of block num1 with a loop count num2.

-S {num}
— {Set the length of sweep laps to num, and} run GridPro for one lap of sweeps.

-C num
—change the internal clustering resetting interval to num sweeps. That is, the internal
cluster parameters will be re–evaluated every num sweeps. num must be >= 1. The
default value is 5.

-C surf list d1 d2
— Setting clustering parameters for surfaces. surf list is a list of surface items separated
by one or more spaces. A surface item is either a surface label or a surface range bounded
by the internal surface ids. d1 and d2 are two clustering parameters for the listed surfaces.

Affected Surfaces: Not all surfaces in the list are affected. The rule is that, if at least one
of the listed surfaces has its spacing parameter set in the TIL code, then only surfaces with
their spacing parameters set in the TIL code will be affected, otherwise all the surfaces in
the list will be affected.

About d1: If the affected surfaces have the spacings specified, d1 is a scaling factor
to the spacings, that is, the target spacing for a surface will be specified spacing*d1.
Otherwise, d1 is the targeted spacing ratio for the affected surfaces.

About d2: d2 gives the grid range used for clustering. At most, one layer of block from
the surface can be used for clustering. Let K be the number of grid layers in the block. If
d2 < 1, the number of grid layers affected is K*d2. Otherwise, the number of grid layers
affected is min{d2,K}.
Turning off Clustering: If either of d1 or d2 is <= 0, the clustering is turned off for the
affected surfaces.

-c num1 [num2 ]
—change the algebraic clustering multiple and algorithm.

About num1: make the new cell count to to be a multiple of num1. num1 must be >=
1. The default is 1.

About num2: select the algorithm num2. num1 must be 0, 1, 2, or 3. The default is 2.

0 – linear algorithm with average spacings.

1 – curve fit algorithm with average spacings.

2 – curve fit algorithm with equalized spacings.

3 – linear algorithm with equalized spacings.

-c surf list d1 d2
— Setting the algebraic clustering parameters for surfaces. surf list is a list of surface
items separated by one or more spaces. A surface item is either a surface label or a surface
range bounded by two numbers that represent two internal surface ids. d1 and d2 are two
clustering parameters for the listed surfaces.

Affected Surfaces: Only surfaces with their spacing parameters set in the TIL code will
be affected.
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About d1: d1 is a scaling factor to the spacings specified in the TIL code, that is, the
target spacing for a surface will be specified spacing*d1.

About d2: d2 gives the cell growth ratio for clustering. d2 must be > 1.0 and < 2.5. The
default is 1.5.

-w {num}
— If num > 0, set the output interval to num sweeps. Without num , the output interval
is unchanged, but output is done once immediately. What to output is determined in the
output section of the same schedule file. If -w .. is an action before any sweep is run,
action “-w” will output the initial setup, and action “-w -1” will output the initial setup
with the surface grid points projected on surfaces.

-r {num}
— Readjust surfaces with radius = num. Without num, the default value for radius is 1.0;
The affected surfaces are those marked with -r flag in the TIL code.

-r surf list num
— Readjust surfaces with radius = num. The surfaces in surf list are readjusted. surf list
is a list of surface items separated by one or more spaces. A surface item is either a surface
label or a surface range bounded by the internal surface ids (e.g. 2..5 SURF1).

-scpl surf list d
— Set the surface–volume coupling constants for surfaces in surf list to d. d should be
greater than 0 (default = 1.0).

-s

— Switch to the script control mode in which actions are read in from the schedule file.

-m

— Switch to on-line control mode in which actions are typed in from the keyboard.

-v num d
— Set the volume relaxation count per sweep to num and set relaxation constant to d.

-sys “script with args”
— Run a Unix or PC script file (for post processing grid).

-D

— Display current run-parameter settings.

-R parameter value
— Change the value of run-parameter parameter to value. For a list of settable parameters,
use the -D action. Some of the most used parameters are:

CTRL.SINGULAR d – d is a number between 1.0 and 2.0. for most cases 1.25 is an adequate
choice.

CTRL.CURVA.STRENGTH d – for curvature control. d should be in the range [0,2]. This
parameter provides an average importance of curvature contribution relative to the
other grid quality measures in the grid generation.
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CTRL.CURVA.LIMIT d – for curvature control. d should be in the range [0,2]. This
parameter is a supplement to the parameter above. The STRENGTH parameter is
specified in an average sense. At the local level, the STRENGTH is limited by the LIMIT
parameter to eliminate possible contribution spikes.

CTRL.CURVA.CUTOFF.LOWER d – for curvature control. d should be in the range [0,90]
and less than CTRL.CURVA.CUTOFF.UPPER. d provides a relative curvature threshold
below which the normalized relative curvature is regarded as 0. Therefore, a larger
value makes the distribution less sensitive to the curvature.

CTRL.CURVA.CUTOFF.UPPER d – for curvature control. d should be in the range [0,90] and
greater than CTRL.CURVA.CUTOFF.LOWER. d provides a relative curvature threshold
above which the normalized relative curvature is regarded as 90 degrees. Therefore,
a larger value makes the distribution less sensitive to curvature.

CTRL.SPACE.STRENGTH d – for spacing ratio control. d should be in the range [0,2]. This
parameter provides an average importance of grid smoothness contribution relative
to the other grid quality measures in the grid generation.

CTRL.SPACE.LIMIT d – for spacing ratio control. d should be in the range [0,2]. This
parameter is a supplement to the parameter above. The STRENGTH parameter is
specified in an average sense. At the local level the STRENGTH is limited by the LIMIT
parameter to eliminate possible contribution spikes.

CTRL.SPACE.CUTOFF.LOWER d – for spacing ratio control. d should be in the range [0,1]
and greater than CTRL.SPACE.CUTOFF.UPPER. This gives the inverse of sensitivity
level to the spacing ratio. d provides a relative threshold below which the spacing
ratio is regarded as 1.0.

CTRL.SPACE.CUTOFF.UPPER d – for spacing ratio control. d should be in the range [0,1]
and less than CTRL.SPACE.CUTOFF.LOWER. This gives the inverse of sensitivity level
to the spacing ratio. d provides a relative threshold below which the spacing ratio is
regarded as 1.0.

NOTE: Schedule file can be modified during a run to steer the run.

A.2 Output section

The output section determines what to output when a ‘-w’ action is encountered in the schedule
section. The output section is composed by lines beginning with the key word ‘write’. The
syntax is:

write which {what} {where}

which = Specify which block(s) to write out. There are four choices:
-b bid – the bidth block.
-c cid1 cid2 – the block defined by corners cid1 and cid2.
-a – all the blocks

what = Specify what kind of data to write out. It is a combination of the following flags:
-D dim – dimension parameter:

0 is for binary dump for restart.
2 is for 2-d grids for 2-d runs.
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3 is for 3-d grids.
-d – output the dual grids.
-m cid1 cid2

Or -m dir – Output a maximum chain of blocks starting with the one
defined in which and chaining in the direction defined
by Face(cid1, cid2), or by the direction dir(=0..5)

The default is 3-d grids.

where = Specify where to output the block(s). There are two choices:
-f fn – output will over-write file fn.
-F fn – output will be appended to file fn.

The default file is ‘dump.tmp’ for dumping and ‘blk.tmp’ for others.
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Appendix B

Worked Out Examples

B.1 Operational aspects

B.1.1 Use only an editor

(1) Sketch topology

(2) Label the sketch

(3) Translate sketch into TIL code

(4) Put TIL in “name.fra”

(5) Make a schedule

(6) Put schedule in “name.sch”

(7) Run case by the command
>Ggrid name.fra <ret>

B.1.2 Use the GridPro R⃝/az3000 Graphic Manager

(1) Start manager with the command
>az <ret>

(2) Create topology

(3) Debug topology

(4) Launch run

(5) Examine grid

(6) Stop the run

(7) Topology is saved in “ az.fra”
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B.1.3 Use both the Graphic Manager and an Editor

(1) Create or edit “.fra” files

(2) Run cases

(3) Viewing grid
>az <ret>

B.2 Running GridPro R⃝/az3OOO in /Cases/gridl:

> cd ~/Cases/grid 1 <ret>

> Ggrid example1.fra <ret> <ret>
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To setup the pattern of points, we first sketch a box about the inner circle and a corresponding
larger box inside the outer circle. Then we connect the corresponding corners. The result is a
wire frame figure that is commonly called a “hypercube”. The sketch appears below along with
the two circular boundaries. Notice that no corner points were put on the boundaries.

Now that we have sketched the figure and have drawn in a simple hypercube for a wire frame
pattern, we must prepare our diagram for encryption into TIL code. This requires us to label
the boundary surfaces and the corner points. The labelled sketch appears below

The labels in the above figure show the relationship between the corners and also the
relationship between corners and the boundary surfaces. To complete the specification, it
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remains to give the actual locations of the comers. The amended figure appears below.

B.3 A Two Dimensional Donut

B.3.1 Surfaces

(ax) * (ax) + (by) * (by) + (cz) * (cz) -1 = 0

(2*x) * (2*x) + (2*y) * (2*y) + (0*z) * (0*z) -1 = 0

(x/5) * (x/5) + (y/5) * (y/5) + (0*z) * (0*z) -1 = 0

Program B.1 File: ‘donut.fra’

SET DIMENSION 2

SET GRIDDEN 6

COMPONENT annular()

BEGIN

s 1 -ellip( 2 2 0) -t -1 0 0 ; #inner circle

s 2 -ellip(0.2 0.2 0) -o ; #outer circle

c 1 -1.5 -1 0 -s 1 ;

c 2 0 -1 0 -s 1 -L 1 ;

c 3 0 0.7 0 -s 1 -L 2 ;

c 4 -1.5 0.7 0 -s 1 -L 3 1;

c 5 -3 -3 0 -s 2 -L 1 ;

c 6 3 -3 0 -s 2 -L 2 5;

c 7 3 3 0 -s 2 -L 3 6;

c 8 -3 3 0 -s 2 -L 4 7;

g 1 5 16 ;

x f 1 3 5 7 ;

END
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Program B.2 File: ‘donut.sch’

step 1: -S 100 -w

write -a -f blk.tmp

write -a -D 0 -f dump.tmp

To generate the grid, type

Ggrid donut.fra <return>

To run GridPro
TM

/az3000, we create a working directory and within which we put donut.fra
and donut.sch. Next, we make sure that the environment variable GRIDPRO is set to
“/usr/local/gridlib” or wherever the installation is. This can be checked with the command

setenv 1 grep GRIDPRO <return>

If it is not properly set, then it can be taken care of with the command

setenv GRIDPRO dir path <return>

This line can be added to your “.login” file in your home directory. To generate the grid we
then type in the command

Ggrid donut.fra <return>

The output data appears in the file “blk.tmp” in a 3D format. In terms of FORTRAN, the
results can be read in the format

Program B.3 Point data format in FORTRAN

READ(UNIT,*) IMAX,JMAX,KMAX

DO 10 I=1,IMAX

DO 10 J=1,JMAX

DO 10 K=1,KMAX

10 READ(UNIT,*) X(I,J,K), Y(I,J,K), Z(I,J,K)
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B.4 A Rod through an Enclosure

B.4.1 Surfaces

(x+1)*(x+1) + y*y = 0.25
x*x + y*y + z*z = 25

(0.25x)*(0.25x) + (0.17y)*(0.17y) + (0.5*(z-5))*(0.5*(z-5)) = 1
0*x + 0*y + l*z + 0 = 0

Program B.4 File: ‘RopSphereCap.fra’

SET GRIDDEN 8

COMPONENT RodSphereCap()

BEGIN

s 1 -ellip( 2 2 0) -t -1 0 0 ; #rod

s 2 -ellip( 0.2 0.2 0.2) -o ; #sphere

s 3 -ellip(0.25 0.17 0.5) -t 0 0 5 ; #cap for sphere

s 4 -plane(0 0 1 0) ; #plane through equator

c 1 -1.5 -1 0 -s 1 4 ;

c 2 0 -1 0 -s 1 4 -L 1 ;

c 3 0 0.7 0 -s 1 4 -L 2 ;

c 4 -1.5 0.7 0 -s 1 4 -L 3 1;

c 5 -3 -3 0 -s 2 4 -L 1 ;

c 6 3 -3 0 -s 2 4 -L 2 5;

c 7 3 3 0 -s 2 4 -L 3 6;

c 8 -3 3 0 -s 2 4 -L 4 7 5;

c 9 -1.5 -1 3.5 -s 1 3 -L 1 ;

c 10 0 -1 3.5 -s 1 3 -L 2 9;

c 11 0 0.7 3.5 -s 1 3 -L 3 10;

c 12 -1.5 0.7 3.5 -s 1 3 -L 4 11 9;

c 13 -3 -3 3.5 -s 2 3 -L 5 9;
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c 14 3 -3 3.5 -s 2 3 -L 6 10 13;

c 15 3 3 3.5 -s 2 3 -L 7 11 14;

c 16 -3 3 3.5 -s 2 3 -L 8 12 15 13;

g 1 5 12 ;

x f 1 3 5 7 9 11 13 15 ;

END

Program B.5 Sub-Program 1

COMPONENT loop4(SIN s1, s2, cIN c[1..8])

BEGIN

c 1 -1 -1 0 -s s1 s2 -L c:1 c:5 ;

c 2 1 -1 0 -s s1 s2 -L c:2 c:6 1 ;

c 3 1 1 0 -s s1 s2 -L c:3 c:7 2 ;

c 4 -1 -1 0 -s s1 s2 -L c:4 c:8 3 1 ;

END

Program B.6 File: ‘RopSphereCap.fra’

COMPONENT RodSphereCap()

BEGIN

s 1 -ellip( 2 2 0) -t -1 0 0 ; #rod

s 2 -ellip( 0.2 0.2 0.2) -o ; #sphere

s 3 -ellip(0.25 0.17 0.5) -t 0 0 5 ; #cap for sphere

s 4 -plane(0 0 1 0) ; #plane through equator

INPUT 1 (-1 0 0) * (0.6 0 0 0 0.6 0 0 0 0.6) *

loop4(sIN (1), (4), cIN (-8), cOUT (1..4));

INPUT 2 (3 0 0 0 3 0 0 0 3) *

loop4(sIN (2), (4), cIN (1:1..4 -4), cOUT (1..4));

INPUT 3 (-1 0 3.5) * (0.6 0 0 0 0.6 0 0 0 0.6) *

loop4(sIN (1), (3), cIN (1:1..4 -4), cOUT (1..4));

INPUT 4 (0 0 3.5) * (3 0 0 0 3 0 0 0 3) *

loop4(sIN (2), (3), cIN (2:1..4 3:1..4), cOUT (1..4));
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g 1:1 2:1 12 ;

x f 1:1 1:3 2:1 2:3 3:1 3:3 4:1 4:3;

END

COMPONENT loop4(SIN s1, s2, cIN c[1..8])

BEGIN

c 1 -1 -1 0 -s s1 s2 -L c:1 c:5 ;

c 2 1 -1 0 -s s1 s2 -L c:2 c:6 1 ;

c 3 1 1 0 -s s1 s2 -L c:3 c:7 2 ;

c 4 -1 -1 0 -s s1 s2 -L c:4 c:8 3 1 ;

END

B.5 Exercises

1. Generate a grid with TIL Program B.1. This has the frame file donut.fra and the schedule
file donut.sch. The schedule is for 100 sweeps with a write. Look at the grid with the
viewer. Then rerun the case with 200 sweeps and look at the grid again. Move comer 2
from (0, -1) to the origin (0, 0) and rerun the case. Examine the results with the viewer.
Are there any differences between the results with the extra 500 sweeps or with then new
position for corner 2?

2. Run TIL Program B.4 and TIL Program B.6 with the schedule as of donut.sch for 100
sweeps. Repeat the runs to get a write at 200 sweeps. Examine the results for any possible
differences. Modify either TIL Program B.4 or B.6 to lift the uppermost inner 4-loop from
z=3.5 to z=4.0. Run the case again to see the results at 100 and then 200 sweeps. What
are the differences if any?

3. Modify TIL Program B.6 to remove the ellipsoidal cap. That is, just remove the cap and
the assignments to it from the uppermost 4-loop. This gives us the simplifier case of a rod
in a sphere. The TIL code for it is then given by

COMPONENT RodSphereCap()

BEGIN

s 1 -ellip( 2 2 0) -t -1 0 0 ; #rod

s 2 -ellip( 0.2 0.2 0.2) -o ; #sphere

s 3 -plane(0 0 1 0) ; #plane through equator

INPUT 1 (-1 0 0) * (0.6 0 0 0 0.6 0 0 0 0.6) *

loop4(sIN (1), (4), cIN (-8), cOUT (1..4));

INPUT 2 (3 0 0 0 3 0 0 0 3) *

loop4(sIN (2), (4), cIN (1:1..4 -4), cOUT (1..4));

INPUT 3 (-1 0 3.5) * (0.6 0 0 0 0.6 0 0 0 0.6) *

loop4(sIN (1), (3), cIN (1:1..4 -4), cOUT (1..4));

INPUT 4 (0 0 3.5) * (3 0 0 0 3 0 0 0 3) *

loop4(sIN (2), (3), cIN (2:1..4 3:1..4), cOUT (1..4));

g 1:1 2:1 12 ;

x f 1:1 1:3 2:1 2:3 3:1 3:3 4:1 4:3;

END
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Put this into a frame file rod thru sphere.fra and form a schedule file by putting the
contents of donut.sch into rod thru sphere.sch. Then generate the grid with 100 sweeps.
What is your assessment of the result? Continue by running the case further, for example
to 200 sweeps. Is there any distinctive difference. What is happening?

4. In the example of program B.6, an improvement can be obtained from a change of topology.
While keeping the core topology intact, cover it with a wrap around configuration of sphere
like sheets. This will provide greater conformity to the geometry of the spherical boundary.
Write the appropriate TIL code, run the case, and examine the results at 100 and 200
sweeps respectively. Compare the results with those of problem 3, above.

B.6 An Array of Rods
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Program B.7 Sub-program 2

COMPONENT hyperquad(sIN s[1..4], cIN p[1..8], c[1..8])

BEGIN

c 1 -0.8 -0.8 0 -s s:1 s:2 -L p:1 ;

c 2 0.8 -0.8 0 -s s:1 s:2 -L p:2 1;

c 3 0.8 0.8 0 -s s:1 s:2 -L p:3 2;

c 4 -0.8 0.8 0 -s s:1 s:2 -L p:4 3 1;

c 5 -1 -1 0 -s s:3 s:4 -L p:5 c:1 c:5 1;

c 6 1 -1 0 -s s:3 s:4 -L p:6 c:2 c:6 2 5;

c 7 1 1 0 -s s:3 s:4 -L p:7 c:3 c:7 3 6;

c 8 -1 1 0 -s s:3 s:4 -L p:8 c:4 c:8 4 7 5;

x f 1 3 5 7 ;

END

Program B.8 Sub-program 3

COMPONENT Rod{sIN sb, st, ciN ci[1..8], cj[1..8])

BEGIN

s 1 -ellip(1 1 0); #unit rod along the z-axis
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INPUT 1 (1.25 0 0 0 1.25 0 0 0 1) *

hyperquad(sIN (sb 1 sb -1), cIN(-8),

(ci:1..4 cj:l..4), cOUT(1..8)) ;

INPUT 2 (1.25 0 0 0 1.25 0 0 0 1) * (0 0 1)

hyperquad(sIN (st 1 st -1), cIN(1:1.,8),

(ci:5..8 cj:5..8), cOUT(1..8)) ;

END
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Program B.9 Sub-program 4

COMPONENT RodRow4(sIN sb, st, y1, y2, cIN h[1..40])

BEGIN

c 1 -1.25 -9 0 -s sb y1 -L ;

c 2 1.25 -9 0 -s sb y1 -L 1 ;

c 3 1.25 -9 1 -s st y1 -L 2 ;

c 4 -1.25 -9 1 -s st y1 -L 3 1 ;

INPUT 1 (0 -6 0) * Rod(sIN (sb), (st),

cIN (-8), (l 2 -2 4 3 -2),

cOUT cf(1:6..7 2:6..7), cb(l:5 1:8 2:5 2:8));

INPUT 2 (0 -2 0) * Rod(sIN (sb), (st),

cIN (-8), (lcb:2 lcf:2 -2 lcb:4 lcf:4 -2),

cOUT cf(1:6..7 2:6..7), cb(l:5 1:8 2:5 2:8));

INPUT 3 (0 2 0) * Rod(sIN (sb), (st),

cIN (-8), (2cb:2 2cf:2 -2 2cb:4 2cf:4 -2),

cOUT cf(1:6..7 2:6..7), cb(l:5 1:8 2:5 2:8));

INPUT 4 (0 -6 0) * Rod(sIN (sb), (st),

cIN (-8), (3cb:2 3cf:2 -2 3cb:4 3cf:4 -2),

cOUT cf(1:6..7 2:6..7), cb(l:5 1:8 2:5 2:8));

c 5 -1.25 9 0 -s sb y2 -L 4cb:2 ;

c 6 1.25 9 0 -s sb y2 -L 4cb:2 5 ;

c 7 1.25 9 1 -s st y2 -L 4cb:4 6 ;

c 8 -1.25 9 1 -s st y2 -L 4cb:4 7 5 ;

INPUT 5 shuffle(cIN

(1 lcb:l..2 2cb:1..2 3cb:l..2 4cb:1..2 5

4 1cb:3..4 2cb:3..4 3cb:3..4 4cb:3..4 8
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2 1cf:1..2 2cf:1..2 3cf:1..2 4cf:1..2 6

3 1cf:3..4 2cf:3..4 3cf:3..4 4cf:3..4 7),

cOUT (cs:1..40)) ;

a e

5:1 h:21 5:2 h:22 5:3 h:23 5:4 h:24 5:5 h:25

5:6 h:26 5:7 h:27 5:8 h:28 5:9 h:29 5:10 h:30

5:11 h:31 5:12 h:32 5:13 h:33 5:14 h:34 5:15 h:35

5:16 h:36 5:17 h:37 5:18 h:38 5:19 h:39 5:20 h:40

END

Program B.10 Sub-program 5

COMPONENT shuffle(cIN cs[1..40]))

BEGIN

END
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Program B.11 Sub-program 6

COMPONENT extrude(sIN sb, st, x, y1, y2, cIN v, h[1..20])

BEGIN

c 1 @ <v> + <h:1> -s sb x y1 -L h:1 ;

c 2 @ <v> + <h:2> -s sb x -L h:2 1;

c 3 @ <v> + <h:3> -s sb x -L h:3 2;

c 4 @ <v> + <h:4> -s sb x -L h:4 3;

c 5 @ <v> + <h:5> -s sb x -L h:5 4;

c 6 @ <v> + <h:6> -s sb x -L h:6 5;

c 7 @ <v> + <h:7> -s sb x -L h:7 6;

c 8 @ <v> + <h:8> -s sb x -L h:8 7;

c 9 @ <v> + <h:9> -s sb x -L h:9 8;

c 10 @ <v> + <h:10> -s sb x y2 -L h:10 9;

c 11 @ <v> + <h:11> -s st x y1 -L h:11 1;

c 12 @ <v> + <h:12> -s st x -L h:12 2 11;

c 13 @ <v> + <h:13> -s st x -L h:13 3 12;

c 14 @ <v> + <h:14> -s st x -L h:14 4 13;

c 15 @ <v> + <h:15> -s st x -L h:15 5 14;

c 16 @ <v> + <h:16> -s st x -L h:16 6 15;

c 17 @ <v> + <h:17> -s st x -L h:17 7 16;

c 18 @ <v> + <h:18> -s st x -L h:18 8 17;

c 19 @ <v> + <h:19> -s st x -L h:19 9 18;

c 20 @ <v> + <h:20> -s st x y2 -L h:20 10 19;

END

Program B.12 Sub-program 7

COMPONENT extrude_line(sIN x, y1, y2, z, cIN v, p[1..10], c[1..10])

BEGIN

c 1 @ <v> + <c:1> -s x y1 z -L p:1 c:1 ;

c 2 @ <v> + <c:2> -s x z -L p:2 c:2 1;

c 3 @ <v> + <c:3> -s x z -L p:3 c:3 2;

c 4 @ <v> + <c:4> -s x z -L p:4 c:4 3;

c 5 @ <v> + <c:5> -s x z -L p:5 c:5 4;
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c 6 @ <v> + <c:6> -s x z -L p:6 c:6 5;

c 7 @ <v> + <c:7> -s x z -L p:7 c:7 6;

c 8 @ <v> + <c:8> -s x z -L p:8 c:8 7;

c 9 @ <v> + <c:9> -s x z -L p:9 c:9 8;

c 10 @ <v> + <c:10> -s x y2 z -L p:10 c:10 9;

END

Program B.13 Sub-program 8

COMPONENT extrude(sIN sb, st, x, y1, y2, cIN v, h[1..20])

BEGIN

INPUT 1 extrude_line(sIN (x), (yl), (y2), (sb),

cIN (-10), (h;1..10), cOUT(1..10));

INPUT 2 extrude_line(sIN (x), (yl), (y2), (st),

cIN (1:1..10), (h:11..20), cOUT(1..10));

END

Program B.14 Sub-program 9

COMPONENT RodArray4x3(sIN sb, st, x1, x2, y1, y2)

BEGIN

VECTOR v;

INPUT 1 RodRow4(sIN (sb), (st), (yl), (y2), cIN (-40),

cOUT (1..40));

INPUT 2 (5 0 0) *

RodRow4(sIN (sb), (st), (yl), (y2), cIN (1:1..40),
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cOUT (1..40));

INPUT 3 (10 0 0) *

RodRow4(sIN (sb), (st), (yl), (y2), cIN (2:1..40),

cOUT (1..40));

<v> = {-1, 0, 0); #backward shift vector for sheet

INPUT 4 extrude(sIN (sb), (st), (xl), (yl), (y2), cIN (v),

(1:1..20);

<v> = { 1, 0, 0); #forward shift vector for sheet

INPUT 5 extrude(sIN (sb), (st), (x2), (yl), (y2), cIN (v),

(3:21..40));

END

Program B.15 Sub-program 10

COMPONENT RodsInBox()

BEGIN

s 1 -plane(0 0 1 0) ; #bottom boundary---sb
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s 2 -ellip(0.05 0.067 0.67) -t -1 0 0; #top boundary------st

s 3 -plane(1 0 3 ) ; #left boundary-----x1

s 4 -plane(-1 0 0 13) ; #right boundary----x2

s 5 -plane(0 1 0 9.5) ; #near boundary-----y1

s 4 -plane(0 -1 0 9.5) ; #far boundary------y2

INPUT 1 RodArray4x3(SIN (1), (2), (3), (4), (5), (6), cIN(-40));

END

Program B.16 File: ‘rodarray.fra’

SET GRIDDEN 4

COMPONENT RodsInBox()

BEGIN

s 1 -plane(0 0 1 0) ; #bottom boundary---sb

s 2 -ellip(0.05 0.067 0.67) -t -1 0 0; #top boundary------st

s 3 -plane(1 0 3 ) ; #left boundary-----x1

s 4 -plane(-1 0 0 13) ; #right boundary----x2

s 5 -plane(0 1 0 9.5) ; #near boundary-----y1

s 4 -plane(0 -1 0 9.5) ; #far boundary------y2

INPUT 1 RodArray4x3(SIN (1), (2), (3), (4), (5), (6), cIN(-40));

END

COMPONENT RodArray4x3(sIN sb, st, x1, x2, y1, y2)

BEGIN

VECTOR v;

INPUT 1 RodRow4(sIN (sb), (st), (yl), (y2), cIN (-40),

cOUT (1..40));

INPUT 2 (5 0 0) *

RodRow4(sIN (sb), (st), (yl), (y2), cIN (1:1..40),

cOUT (1..40));

INPUT 3 (10 0 0) *

RodRow4(sIN (sb), (st), (yl), (y2), cIN (2:1..40),

cOUT (1..40));

<v> = {-1, 0, 0); #backward shift vector for sheet

INPUT 4 extrude(sIN (sb), (st), (xl), (yl), (y2), cIN (v),

(1:1..20);

<v> = { 1, 0, 0); #forward shift vector for sheet

INPUT 5 extrude(sIN (sb), (st), (x2), (yl), (y2), cIN (v),

(3:21..40));

END

COMPONENT extrude(sIN sb, st, x, y1, y2, cIN v, h[1..20])

BEGIN

INPUT 1 extrude_line(sIN (x), (yl), (y2), (sb),

cIN (-10), (h;1..10), cOUT(1..10));

INPUT 2 extrude_line(sIN (x), (yl), (y2), (st),

cIN (1:1..10), (h:11..20), cOUT(1..10));

END



88 APPENDIX B. WORKED OUT EXAMPLES

COMPONENT extrude_line(sIN x, y1, y2, z, cIN v, p[1..10], c[1..10])

BEGIN

c 1 @ <v> + <c:1> -s x y1 z -L p:1 c:1 ;

c 2 @ <v> + <c:2> -s x z -L p:2 c:2 1;

c 3 @ <v> + <c:3> -s x z -L p:3 c:3 2;

c 4 @ <v> + <c:4> -s x z -L p:4 c:4 3;

c 5 @ <v> + <c:5> -s x z -L p:5 c:5 4;

c 6 @ <v> + <c:6> -s x z -L p:6 c:6 5;

c 7 @ <v> + <c:7> -s x z -L p:7 c:7 6;

c 8 @ <v> + <c:8> -s x z -L p:8 c:8 7;

c 9 @ <v> + <c:9> -s x z -L p:9 c:9 8;

c 10 @ <v> + <c:10> -s x y2 z -L p:10 c:10 9;

END

COMPONENT RodRow4(sIN sb, st, y1, y2, cIN h[1..40])

BEGIN

c 1 -1.25 -9 0 -s sb y1 -L ;

c 2 1.25 -9 0 -s sb y1 -L 1 ;

c 3 1.25 -9 1 -s st y1 -L 2 ;

c 4 -1.25 -9 1 -s st y1 -L 3 1 ;

INPUT 1 (0 -6 0) * Rod(sIN (sb), (st),

cIN (-8), (l 2 -2 4 3 -2),

cOUT cf(1:6..7 2:6..7), cb(l:5 1:8 2:5 2:8));

INPUT 2 (0 -2 0) * Rod(sIN (sb), (st),

cIN (-8), (lcb:2 lcf:2 -2 lcb:4 lcf:4 -2),

cOUT cf(1:6..7 2:6..7), cb(l:5 1:8 2:5 2:8));

INPUT 3 (0 2 0) * Rod(sIN (sb), (st),

cIN (-8), (2cb:2 2cf:2 -2 2cb:4 2cf:4 -2),

cOUT cf(1:6..7 2:6..7), cb(l:5 1:8 2:5 2:8));

INPUT 4 (0 -6 0) * Rod(sIN (sb), (st),

cIN (-8), (3cb:2 3cf:2 -2 3cb:4 3cf:4 -2),

cOUT cf(1:6..7 2:6..7), cb(l:5 1:8 2:5 2:8));

c 5 -1.25 9 0 -s sb y2 -L 4cb:2 ;

c 6 1.25 9 0 -s sb y2 -L 4cb:2 5 ;

c 7 1.25 9 1 -s st y2 -L 4cb:4 6 ;

c 8 -1.25 9 1 -s st y2 -L 4cb:4 7 5 ;

INPUT 5 shuffle(cIN

(1 lcb:l..2 2cb:1..2 3cb:l..2 4cb:1..2 5

4 1cb:3..4 2cb:3..4 3cb:3..4 4cb:3..4 8

2 1cf:1..2 2cf:1..2 3cf:1..2 4cf:1..2 6

3 1cf:3..4 2cf:3..4 3cf:3..4 4cf:3..4 7),

cOUT (cs:1..40)) ;

a e

5:1 h:21 5:2 h:22 5:3 h:23 5:4 h:24 5:5 h:25
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5:6 h:26 5:7 h:27 5:8 h:28 5:9 h:29 5:10 h:30

5:11 h:31 5:12 h:32 5:13 h:33 5:14 h:34 5:15 h:35

5:16 h:36 5:17 h:37 5:18 h:38 5:19 h:39 5:20 h:40

END

COMPONENT shuffle(cIN cs[1..40]))

BEGIN

END

COMPONENT Rod{sIN sb, st, ciN ci[1..8], cj[1..8])

BEGIN

s 1 -ellip(1 1 0); #unit rod along the z-axis

INPUT 1 (1.25 0 0 0 1.25 0 0 0 1) *

hyperquad(sIN (sb 1 sb -1), cIN(-8),

(ci:1..4 cj:l..4), cOUT(1..8)) ;

INPUT 2 (1.25 0 0 0 1.25 0 0 0 1) * (0 0 1)

hyperquad(sIN (st 1 st -1), cIN(1:1.,8),

(ci:5..8 cj:5..8), cOUT(1..8)) ;

END

COMPONENT hyperquad(sIN s[1..4], cIN p[1..8], c[1..8])

BEGIN

c 1 -0.8 -0.8 0 -s s:1 s:2 -L p:1 ;

c 2 0.8 -0.8 0 -s s:1 s:2 -L p:2 1;

c 3 0.8 0.8 0 -s s:1 s:2 -L p:3 2;

c 4 -0.8 0.8 0 -s s:1 s:2 -L p:4 3 1;

c 5 -1 -1 0 -s s:3 s:4 -L p:5 c:1 c:5 1;

c 6 1 -1 0 -s s:3 s:4 -L p:6 c:2 c:6 2 5;

c 7 1 1 0 -s s:3 s:4 -L p:7 c:3 c:7 3 6;

c 8 -1 1 0 -s s:3 s:4 -L p:8 c:4 c:8 4 7 5;

x f 1 3 5 7 ;

END
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B.7 Grid About Parallel Orthogonal Fibers
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Program B.17 Sub-program 11

COMPONENT curve6(sIN s[1..4], cIN t, x[1..6], p[1..6], q[1..6])

BEGIN

c 1 @ <x:1> + <t> -s s:2 s:3 s:1 -L p:1 q:1 ;

c 2 @ <x:2> + <t> -s s:2 s:3 -L p:2 q:2 1;

c 3 @ <x:3> + <t> -s s:2 s:3 -L p:3 q:3 2;

c 4 @ <x:4> + <t> -s s:2 s:3 -L p:4 q:4 3;

c 5 @ <x:5> + <t> -s s:2 s:3 -L p:5 q:5 4;

c 6 @ <x:6> + <t> -s s:2 s:3 s:4 -L p:6 q:6 5;

END

Program B.18 Sub-program 12

COMPONENT cubes_2x2x5(sIN x0, x1, y0, y1, z0, z1)

BEGIN

VECTOR x[1..6], t

<x:1> = (0, 0, 0 ) ;

<x:2> = (0, 0, 2 ) ;

<x:3> = (0, 0, 4.5) ;

<x:4> = (0, 0, 5.5) ;

<x:5> = (0, 0, 8 ) ;

<x:6> = (0, 0, 10 ) ;

#Rod Crossover Location

INPUT 1 curve6(sIN (z0 x0 y0 zl),

cIN (-1),(x:1..6), (-6), (-6),

cOUT (1..6));

<t> = {2.5, 0, 0} ;

INPUT 2 curve6(sIN (z0 -1 y0 zl),

cIN (t), (x:1..6), (1:1..6), (-6),

cOUT (1..6));

<t> = {0, 2.5, 0} ;

INPUT 3 curve6(sIN (z0 x0 -1 zl),

cIN (t), (x:1..6), (1:1..6), (-6),

cOUT (1..6));

<t> = {2.5, 2.5, 0};

INPUT 4 curve6(sIN (z0 -1 -1 zl),

cIN (t), (x:1..6), (2:1..6), (3:1..6),

cOUT (1..6));

#Diagonally Opposite Corner from Crossover Location

<t> = {7.5, 7.5, 0) ;

INPUT 5 curve6(sIN (z0 xl yl zl),

cIN (-1), (x:1..6), (-6), (-6),

cOUT (1..6));
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#The xmax boundary b2

<t> = {7.5, 2.5, 0} ;

INPUT 6 curve6(sIN (z0 xl -1 zl),

cIN (t), (x:1..6), (4:1..6), (5:1..6),

cOUT (1..6));

<t> = {7.5, 0, 0} ;

INPUT 7 curve6(sIN (z0 xl y0 zl),

cIN (t), (x:1..6), (2:1..6), (6:1..6),

cOUT (1..6));

#The ymax boundary b4

<t> = {2.5, 7.5, 0} ;

INPUT 8 curve6(sIN (z0 yl -1 zl),

cIN (t), (x:1..6), (4:1..6), (5:1..6),

cOUT (1..6));

<t> = {0, 7.5, 0} ;

INPUT 9 curve6(sIN (z0 x0 yl zl),

cIN (t), (x:1..6), (3:1..6), (8:1..6),

cOUT (1..6));

END

Program B.19 Sub-program 13

COMPONENT semi_loop_face(sIN s[1..3], cIN f[1..4], p[1..4], q[1..6])

BEGIN
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c 1 @ 0.9*<f:1>+0.1*<f:2> -s s:1 s:2 s:3 -L f:1 p:1 q:1 ;

c 2 @ 0.1*<f:1>+0.9*<f:2> -s s:1 s:2 s:3 -L f:2 p:2 q:2 ;

c 3 @ 0.1*<f:1>+0.9*<f:3> -s s:1 s:3 -L f:3 p:3 q:3 2;

c 4 @ 0.1*<f:2>+0.9*<f:4> -s s:1 s:3 -L f:4 p:4 q:4 3 1;

x e f:1 f:2 ;

END

Program B.20 Sub-program 14

COMPONENT fibre()

BEGIN

s 1 -plane @ ({1, 0, 0}, {0, 0, 0}) ; # xmin boundary x0

s 2 -plane @ ({-l, 0, 0}, {8, 0, 0}) ; # xmax boundary xl

s 3 -plane @ ({0, 1, 0}, {0, 0, 0}) ; # ymin boundary y0

s 4 -plane @ ({0, 1, 0}, {0, 8, 0}) ; # ymax boundary yl

s 5 -plane @ ({0, 0, 1}, {0, 0, 0}) ; # zmin boundary z0

s 6 -plane @ ({0, 0, -1}, {0,0, 10}) ; # zmax boundary zl

s 7 -ellip (0, 1, 1) -t @ ({0, 0, 6.75)); # fiber in x direction

s 8 -ellip (l, 0, 1) -t @ ({0, 0, 3.25)); # fiber in y direction

INPUT 1 cubes_2x2x5(sIN (1), (2), (3), (4), (5), (6),

cOUT xl(l:4 1:5 3:5 3:4)

x2(2:4 2:5 4:5 4:4)

x3(7:4 7:5 6:5 6:4)

yl(1:5 1:3 2:3 2:2)

y2(3:2 3:3 4:3 4:2)

y3(9:2 9:3 8:3 8:2));

INPUT 2 semi_loop_face(sIN( 1 3 7), cIN(1x1:1..4), (-4), (-4),

cOUT (1..4));

INPUT 3 semi_loop_face(sIN(-1 3 7), cIN(1x2:1..4), (2:1..4), (-4),

cOUT (1..4));

INPUT 4 semi_loop_face(sIN(2 3 7), cIN(1x3:1..4), (3:1..4), (-4),

cOUT (1..4));

INPUT 5 semi_loop_face(sIN(3 1 8), cIN(lyl:1..4), (-4), (-4),
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cOUT (1..4));

INPUT 6 semi_loop_face(sIN(-1 1 8), cIN(ly2:1..4), (5:1..4), (-4),

cOUT (1..4));

INPUT 7 semi_loop_face(sIN(4 1 8), cIN(ly3:1..4), (6:1,.4), (-4));

END
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B.8 Fiber

Program B.21 File: ‘fiber1.fra’

COMPONENT fiber()

BEGIN

VECTOR d;

s 1 -plane @ ({1, 0, 0}, {0, 0, 0}) ; # xmin boundary x0

s 2 -plane @ ({-l, 0, 0}, {8, 0, 0}) ; # xmax boundary xl

s 3 -plane @ ({0, 1, 0}, {0, 0, 0}) ; # ymin boundary y0

s 4 -plane @ ({0, 1, 0}, {0, 8, 0}) ; # ymax boundary yl

s 5 -plane @ ({0, 0, 1}, {0, 0, 0}) ; # zmin boundary z0

s 6 -plane @ ({0, 0, -1}, {0,0, 10}) ; # zmax boundary zl

s 7 -tube "fy0.dat" ; # fiber on y0 face

s 8 -tube "fx0.dat" ; # fiber on x0 face

s 9 -tube "fy1.dat" ; # fiber on y1 face

s 10 -tube "fx1.dat" ; # fiber on x1 face

INPUT 1 cubes_6x6x6(sIN (1), (2), (3), (4), (5), (6),

cOUT fy0(1:3 1:2 2:2 2:3 1:9 1:8 2:8 2:9

1:15 1:14 2:14 2:15 1:21 1:20 2:20 2:21

1:17 1:16 2:16 2:17 1:23 1:22 2:22 2:23

1:29 1:28 2:28 2:29 1:35 1:34 2:34 2:35),

fx0(6:3 6:2 6:8 6:9 5:3 5:2 5:8 5:9

4:3 4:2 4:8 4:9 3:3 3:2 3:8 3:9

4:5 4:4 4:10 4:11 3:5 3:4 3:10 3:11

2:5 2:4 2:10 2:11 1:5 1:4 1:10 1:11),

fy1(6:33 6:32 5:32 5:33 6:27 6:26 5:26 5:27

6:21 6:20 5:20 5:21 6:15 6:14 5:14 5:15

6:23 6:22 5:22 5:23 6:17 6:16 5:16 5:17

6:11 6:10 5:10 5:11 6:5 6:4 5:4 5:5);

fx1(1:33 1:32 1:26 1:27 2:33 2:32 2:26 2:27

3:33 3:32 3:26 3:27 4:33 4:32 4:26 4:27

3:35 3:34 3:28 3:29 4:35 4:34 4:28 4:29

5:35 5:34 5:28 5:29 6:35 6:34 6:28 6:29));

<d> = {0.1, 0, 0} ;

INPUT 2 oneFiber(sIN (7), (3), (1..2),

cIN (d), (1fy0:1..4), (1fy0:5..8), (1fy0:9..12), (1fy0:13..16),

(1fy0:17..20), (1fy0:21..24), (1fy0:25..28), (1fy0:29..32));

<d> = {0, -0.1, 0} ;

INPUT 3 oneFiber(sIN (8), (1), (4 3),

cIN (d), (1fx0:1..4), (1fx0:5..8), (1fx0:9..12), (1fx0:13..16),

(1fx0:17..20), (1fx0:21..24), (1fx0:25..28), (1fx0:29..32));

<d> = {-0.1, 0, 0} ;

INPUT 4 oneFiber(sIN (9), (4), (2 1),

cIN (d), (1fy1:1..4), (1fy1:5..8), (1fy1:9..12), (1fy1:13..16),

(1fy1:17..20), (1fy1:21..24), (1fy1:25..28), (1fy1:29..32));

<d> = {0, 0.1, 0} ;

INPUT 5 oneFiber(sIN (10), (2), (3 4),
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cIN (d), (1fx1:1..4), (1fx1:5..8), (1fx1:9..12), (1fx1:13..16),

(1fx1:17..20), (1fx1:21..24), (1fx1:25..28), (1fx1:29..32));

END

#---------------------------------------------------------------------------------------#

# Sub-COMPONENTs (must be after the main COMPONENT)

COMPONENT oneFiber(sIN fib, wall, end[1..2],

cIN d, sec1[1..4], sec2[1..4], sec3[1..4], sec4[1..4],

sec5[1..4], sec6[1..4], sec7[1..4], sec8[1..4])

BEGIN

VECTOR D, zero;

<D> = -<d>; <zero> = [0, 0, 0] ;

x e sec1:1 sec1:2 sec2:1 sec2:2 sec3:1 sec3:2 sec4:1 sec3:1;

x e sec5:2 sec6:2 sec6:1 sec6:2 sec7:1 sec7:2 sec8:1 sec8:2;

INPUT 1 semi_loop(sIN (fib), (wall), (end:1), cIN (zero), (sec1:1..4),

(-4), cOUT (1..4));

INPUT 2 semi_loop(sIN (fib), (wall), (-1), cIN (zero), (sec2:1..4),

(1:1..4), cOUT (1..4));

INPUT 3 semi_loop(sIN (fib), (wall), (-1), cIN (d), (sec3:1..4),

(2:1..4), cOUT (1..4));

INPUT 4 semi_loop(sIN (fib), (wall), (-1), cIN (D), (sec4:1..4),

(3:1..4), cOUT (1..4));

a e 3:1 5:2 4:1 6:2 3:4 5:3 4:4 6:3;

x e 5:2 6:2;

a e 5:1 5:2;

END

COMPONENT cubes_6x6x6(sIN x0, x1, y0, y1, z0, z1)

BEGIN

VECTOR y[1..6],

<y:1> = {0, 0, 0}; <y:2> = {0, 0.5, 0}, <y:3> = {0, 1, 0};

<y:4> = {0, 7, 0}; <y:5> = {0, 7.5, 0}, <y:6> = {0, 8, 0};

INPUT 1 sheet_6x6(sIN (x0), (x1), (y0), (z0), (z1), cIN (y:1), (-36),

cOUT (1:1..6 2:1..6 3:1..6 4:1..6 5:1..6 6:1..6));

INPUT 2 sheet_6x6(sIN (x0), (x1), (-1), (z0), (z1), cIN (y:2), (1:1..36),

cOUT (1:1..6 2:1..6 3:1..6 4:1..6 5:1..6 6:1..6));

INPUT 3 sheet_6x6(sIN (x0), (x1), (-1), (z0), (z1), cIN (y:3), (2:1..36),

cOUT (1:1..6 2:1..6 3:1..6 4:1..6 5:1..6 6:1..6));

INPUT 4 sheet_6x6(sIN (x0), (x1), (-1), (z0), (z1), cIN (y:4), (3:1..36),

cOUT (1:1..6 2:1..6 3:1..6 4:1..6 5:1..6 6:1..6));

INPUT 5 sheet_6x6(sIN (x0), (x1), (-1), (z0), (z1), cIN (y:5), (4:1..36),

cOUT (1:1..6 2:1..6 3:1..6 4:1..6 5:1..6 6:1..6));

INPUT 3 sheet_6x6(sIN (x0), (x1), (y1), (z0), (z1), cIN (y:6), (5:1..36),

cOUT (1:1..6 2:1..6 3:1..6 4:1..6 5:1..6 6:1..6));

END

COMPONENT sheet_6x6(sIN x0, x1, sy, z0, z1, cIN y, sh[1..36])
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BEGIN

VECTOR z[1..6], x[1..6];

<x:1> = {0, 0, 0}; <x:2> = {0.5, 0, 0}, <x:3> = {1, 0, 0};

<x:4> = {7, 0, 0}; <x:5> = {7.5, 0, 0}, <x:6> = {8, 0, 0};

<z:1> = {0, 0, 0} + <y> ; <z:2> = {0, 0, 1} + <y> ;

<z:3> = {0, 0, 4.5} + <y> ; <z:4> = {0, 0, 5.5} + <y> ;

<z:5> = {0, 0, 9} + <y> ; <z:6> = {0, 0, 10} + <y> ;

INPUT 1 curve6(sIN (z0 x0 sy z1),

cIN (x:1), (z:1..6), (-6), (sh:1..6), cOUT(1..6));

INPUT 2 curve6(sIN (z0 -1 sy z1),

cIN (x:2), (z:1..6), (1:1..6), (sh:7..12), cOUT(1..6));

INPUT 3 curve6(sIN (z0 -1 sy z1),

cIN (x:3), (z:1..6), (2:1..6), (sh:13..18), cOUT(1..6));

INPUT 4 curve6(sIN (z0 -1 sy z1),

cIN (x:4), (z:1..6), (3:1..6), (sh:19..24), cOUT(1..6));

INPUT 5 curve6(sIN (z0 -1 sy z1),

cIN (x:5), (z:1..6), (4:1..6), (sh:25..30), cOUT(1..6));

INPUT 6 curve6(sIN (z0 x1 sy z1),

cIN (x:6), (z:1..6), (5:1..6), (sh:31..36), cOUT(1..6));

END

COMPONENT semi_loop_face(sIN fib, wall, end, cIN d, f[1..4], p[1..4])

BEGIN

c 1 @ 0.9*<f:1>+0.1*<f:2> -s fib end wall -L f:1 p:1 ;

c 2 @ 0.1*<f:1>+0.9*<f:2> -s fib end wall -L f:2 p:2 ;

c 3 @ 0.1*<f:1>+0.9*<f:3> -s fib end -L f:3 p:3 2;

c 4 @ 0.1*<f:2>+0.9*<f:4> -s fib end -L f:4 p:4 3 1;

END

COMPONENT curve6(sIN s[1..4], cIN t, x[1..6], p[1..6], q[1..6])

BEGIN

c 1 @ <x:1> + <t> -s s:2 s:3 s:1 -L p:1 q:1 ;

c 2 @ <x:2> + <t> -s s:2 s:3 -L p:2 q:2 1;

c 3 @ <x:3> + <t> -s s:2 s:3 -L p:3 q:3 2;

c 4 @ <x:4> + <t> -s s:2 s:3 -L p:4 q:4 3;

c 5 @ <x:5> + <t> -s s:2 s:3 -L p:5 q:5 4;

c 6 @ <x:6> + <t> -s s:2 s:3 s:4 -L p:6 q:6 5;

END

Program B.22 File: ‘fiber1.sch’

step 100: -w 50 -S 51

write -a -f blk.tmp

write -a -D 0 -f dump.tmp
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